ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resdm Unicode version

Theorem resdm 4923
Description: A relation restricted to its domain equals itself. (Contributed by NM, 12-Dec-2006.)
Assertion
Ref Expression
resdm  |-  ( Rel 
A  ->  ( A  |` 
dom  A )  =  A )

Proof of Theorem resdm
StepHypRef Expression
1 ssid 3162 . 2  |-  dom  A  C_ 
dom  A
2 relssres 4922 . 2  |-  ( ( Rel  A  /\  dom  A 
C_  dom  A )  ->  ( A  |`  dom  A
)  =  A )
31, 2mpan2 422 1  |-  ( Rel 
A  ->  ( A  |` 
dom  A )  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1343    C_ wss 3116   dom cdm 4604    |` cres 4606   Rel wrel 4609
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-br 3983  df-opab 4044  df-xp 4610  df-rel 4611  df-dm 4614  df-res 4616
This theorem is referenced by:  resindm  4926  resdm2  5094  relresfld  5133  relcoi1  5135  funimaexg  5272  fnex  5707  dftpos2  6229  pmresg  6642  dif1en  6845
  Copyright terms: Public domain W3C validator