Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > resexg | GIF version |
Description: The restriction of a set is a set. (Contributed by NM, 28-Mar-1998.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
Ref | Expression |
---|---|
resexg | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ↾ 𝐵) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | resss 4915 | . 2 ⊢ (𝐴 ↾ 𝐵) ⊆ 𝐴 | |
2 | ssexg 4128 | . 2 ⊢ (((𝐴 ↾ 𝐵) ⊆ 𝐴 ∧ 𝐴 ∈ 𝑉) → (𝐴 ↾ 𝐵) ∈ V) | |
3 | 1, 2 | mpan 422 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ↾ 𝐵) ∈ V) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2141 Vcvv 2730 ⊆ wss 3121 ↾ cres 4613 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 ax-sep 4107 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-v 2732 df-in 3127 df-ss 3134 df-res 4623 |
This theorem is referenced by: resex 4932 offres 6114 resixp 6711 climres 11266 setsvalg 12446 setsex 12448 setsslid 12466 |
Copyright terms: Public domain | W3C validator |