ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reu7 GIF version

Theorem reu7 2956
Description: Restricted uniqueness using implicit substitution. (Contributed by NM, 24-Oct-2006.)
Hypothesis
Ref Expression
rmo4.1 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
reu7 (∃!𝑥𝐴 𝜑 ↔ (∃𝑥𝐴 𝜑 ∧ ∃𝑥𝐴𝑦𝐴 (𝜓𝑥 = 𝑦)))
Distinct variable groups:   𝑥,𝑦,𝐴   𝜑,𝑦   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)

Proof of Theorem reu7
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 reu3 2951 . 2 (∃!𝑥𝐴 𝜑 ↔ (∃𝑥𝐴 𝜑 ∧ ∃𝑧𝐴𝑥𝐴 (𝜑𝑥 = 𝑧)))
2 rmo4.1 . . . . . . 7 (𝑥 = 𝑦 → (𝜑𝜓))
3 equequ1 1723 . . . . . . . 8 (𝑥 = 𝑦 → (𝑥 = 𝑧𝑦 = 𝑧))
4 equcom 1717 . . . . . . . 8 (𝑦 = 𝑧𝑧 = 𝑦)
53, 4bitrdi 196 . . . . . . 7 (𝑥 = 𝑦 → (𝑥 = 𝑧𝑧 = 𝑦))
62, 5imbi12d 234 . . . . . 6 (𝑥 = 𝑦 → ((𝜑𝑥 = 𝑧) ↔ (𝜓𝑧 = 𝑦)))
76cbvralv 2726 . . . . 5 (∀𝑥𝐴 (𝜑𝑥 = 𝑧) ↔ ∀𝑦𝐴 (𝜓𝑧 = 𝑦))
87rexbii 2501 . . . 4 (∃𝑧𝐴𝑥𝐴 (𝜑𝑥 = 𝑧) ↔ ∃𝑧𝐴𝑦𝐴 (𝜓𝑧 = 𝑦))
9 equequ1 1723 . . . . . . 7 (𝑧 = 𝑥 → (𝑧 = 𝑦𝑥 = 𝑦))
109imbi2d 230 . . . . . 6 (𝑧 = 𝑥 → ((𝜓𝑧 = 𝑦) ↔ (𝜓𝑥 = 𝑦)))
1110ralbidv 2494 . . . . 5 (𝑧 = 𝑥 → (∀𝑦𝐴 (𝜓𝑧 = 𝑦) ↔ ∀𝑦𝐴 (𝜓𝑥 = 𝑦)))
1211cbvrexv 2727 . . . 4 (∃𝑧𝐴𝑦𝐴 (𝜓𝑧 = 𝑦) ↔ ∃𝑥𝐴𝑦𝐴 (𝜓𝑥 = 𝑦))
138, 12bitri 184 . . 3 (∃𝑧𝐴𝑥𝐴 (𝜑𝑥 = 𝑧) ↔ ∃𝑥𝐴𝑦𝐴 (𝜓𝑥 = 𝑦))
1413anbi2i 457 . 2 ((∃𝑥𝐴 𝜑 ∧ ∃𝑧𝐴𝑥𝐴 (𝜑𝑥 = 𝑧)) ↔ (∃𝑥𝐴 𝜑 ∧ ∃𝑥𝐴𝑦𝐴 (𝜓𝑥 = 𝑦)))
151, 14bitri 184 1 (∃!𝑥𝐴 𝜑 ↔ (∃𝑥𝐴 𝜑 ∧ ∃𝑥𝐴𝑦𝐴 (𝜓𝑥 = 𝑦)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wral 2472  wrex 2473  ∃!wreu 2474
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator