| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > reu7 | GIF version | ||
| Description: Restricted uniqueness using implicit substitution. (Contributed by NM, 24-Oct-2006.) |
| Ref | Expression |
|---|---|
| rmo4.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| reu7 | ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ (∃𝑥 ∈ 𝐴 𝜑 ∧ ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝜓 → 𝑥 = 𝑦))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reu3 2962 | . 2 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ (∃𝑥 ∈ 𝐴 𝜑 ∧ ∃𝑧 ∈ 𝐴 ∀𝑥 ∈ 𝐴 (𝜑 → 𝑥 = 𝑧))) | |
| 2 | rmo4.1 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
| 3 | equequ1 1734 | . . . . . . . 8 ⊢ (𝑥 = 𝑦 → (𝑥 = 𝑧 ↔ 𝑦 = 𝑧)) | |
| 4 | equcom 1728 | . . . . . . . 8 ⊢ (𝑦 = 𝑧 ↔ 𝑧 = 𝑦) | |
| 5 | 3, 4 | bitrdi 196 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → (𝑥 = 𝑧 ↔ 𝑧 = 𝑦)) |
| 6 | 2, 5 | imbi12d 234 | . . . . . 6 ⊢ (𝑥 = 𝑦 → ((𝜑 → 𝑥 = 𝑧) ↔ (𝜓 → 𝑧 = 𝑦))) |
| 7 | 6 | cbvralv 2737 | . . . . 5 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 → 𝑥 = 𝑧) ↔ ∀𝑦 ∈ 𝐴 (𝜓 → 𝑧 = 𝑦)) |
| 8 | 7 | rexbii 2512 | . . . 4 ⊢ (∃𝑧 ∈ 𝐴 ∀𝑥 ∈ 𝐴 (𝜑 → 𝑥 = 𝑧) ↔ ∃𝑧 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝜓 → 𝑧 = 𝑦)) |
| 9 | equequ1 1734 | . . . . . . 7 ⊢ (𝑧 = 𝑥 → (𝑧 = 𝑦 ↔ 𝑥 = 𝑦)) | |
| 10 | 9 | imbi2d 230 | . . . . . 6 ⊢ (𝑧 = 𝑥 → ((𝜓 → 𝑧 = 𝑦) ↔ (𝜓 → 𝑥 = 𝑦))) |
| 11 | 10 | ralbidv 2505 | . . . . 5 ⊢ (𝑧 = 𝑥 → (∀𝑦 ∈ 𝐴 (𝜓 → 𝑧 = 𝑦) ↔ ∀𝑦 ∈ 𝐴 (𝜓 → 𝑥 = 𝑦))) |
| 12 | 11 | cbvrexv 2738 | . . . 4 ⊢ (∃𝑧 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝜓 → 𝑧 = 𝑦) ↔ ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝜓 → 𝑥 = 𝑦)) |
| 13 | 8, 12 | bitri 184 | . . 3 ⊢ (∃𝑧 ∈ 𝐴 ∀𝑥 ∈ 𝐴 (𝜑 → 𝑥 = 𝑧) ↔ ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝜓 → 𝑥 = 𝑦)) |
| 14 | 13 | anbi2i 457 | . 2 ⊢ ((∃𝑥 ∈ 𝐴 𝜑 ∧ ∃𝑧 ∈ 𝐴 ∀𝑥 ∈ 𝐴 (𝜑 → 𝑥 = 𝑧)) ↔ (∃𝑥 ∈ 𝐴 𝜑 ∧ ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝜓 → 𝑥 = 𝑦))) |
| 15 | 1, 14 | bitri 184 | 1 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ (∃𝑥 ∈ 𝐴 𝜑 ∧ ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝜓 → 𝑥 = 𝑦))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∀wral 2483 ∃wrex 2484 ∃!wreu 2485 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-tru 1375 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-rex 2489 df-reu 2490 df-rmo 2491 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |