![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 3impia | Unicode version |
Description: Importation to triple conjunction. (Contributed by NM, 13-Jun-2006.) |
Ref | Expression |
---|---|
3impia.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
3impia |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3impia.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | ex 115 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | 2 | 3imp 1195 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 df-3an 982 |
This theorem is referenced by: mopick2 2125 3gencl 2794 mob2 2941 moi 2944 reupick3 3445 disjne 3501 disji2 4023 tz7.2 4386 funopg 5289 fvun1 5624 fvopab6 5655 isores3 5859 ovmpt4g 6042 ovmpos 6043 ov2gf 6044 ofrval 6143 poxp 6287 smoel 6355 tfr1onlemaccex 6403 tfrcllemaccex 6416 nnaass 6540 qsel 6668 xpdom3m 6890 phpm 6923 ctssdc 7174 mkvprop 7219 prarloclem3 7559 aptisr 7841 axpre-apti 7947 axapti 8092 addn0nid 8395 divvalap 8695 letrp1 8869 p1le 8870 zextle 9411 zextlt 9412 btwnnz 9414 gtndiv 9415 uzind2 9432 fzind 9435 iccleub 10000 uzsubsubfz 10116 elfz0fzfz0 10195 difelfznle 10204 elfzo0le 10255 fzonmapblen 10257 fzofzim 10258 fzosplitprm1 10304 rebtwn2zlemstep 10324 qbtwnxr 10329 icogelb 10337 expcl2lemap 10625 expclzaplem 10637 expnegzap 10647 leexp2r 10667 expnbnd 10737 bcval4 10826 bccmpl 10828 elovmpowrd 10958 absexpzap 11227 divalgb 12069 ndvdssub 12074 dvdsgcd 12152 dfgcd2 12154 rplpwr 12167 nnmindc 12174 lcmgcdlem 12218 coprmdvds1 12232 qredeq 12237 prmdvdsexpr 12291 nnnn0modprm0 12396 pcexp 12450 difsqpwdvds 12479 prmpwdvds 12496 elrestr 12861 isnmgm 12946 grpasscan1 13138 grpinvnz 13146 mulgneg2 13229 dvdsrmul1 13601 dvdsunit 13611 lmodlema 13791 mopni 14661 sincosq1lem 15001 logbgcd1irr 15140 gausslemma2dlem1a 15215 gausslemma2dlem2 15219 gausslemma2dlem4 15221 2lgsoddprmlem3 15268 |
Copyright terms: Public domain | W3C validator |