| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3impia | Unicode version | ||
| Description: Importation to triple conjunction. (Contributed by NM, 13-Jun-2006.) |
| Ref | Expression |
|---|---|
| 3impia.1 |
|
| Ref | Expression |
|---|---|
| 3impia |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3impia.1 |
. . 3
| |
| 2 | 1 | ex 115 |
. 2
|
| 3 | 2 | 3imp 1196 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 983 |
| This theorem is referenced by: mopick2 2139 3gencl 2811 mob2 2960 moi 2963 reupick3 3466 disjne 3522 elpr2elpr 3830 disji2 4051 tz7.2 4419 funopg 5324 fvun1 5668 fvopab6 5699 isores3 5907 ovmpt4g 6091 ovmpos 6092 ov2gf 6093 ofrval 6192 poxp 6341 smoel 6409 tfr1onlemaccex 6457 tfrcllemaccex 6470 nnaass 6594 qsel 6722 xpdom3m 6954 phpm 6988 ctssdc 7241 mkvprop 7286 prarloclem3 7645 aptisr 7927 axpre-apti 8033 axapti 8178 addn0nid 8481 divvalap 8782 letrp1 8956 p1le 8957 zextle 9499 zextlt 9500 btwnnz 9502 gtndiv 9503 uzind2 9520 fzind 9523 iccleub 10088 uzsubsubfz 10204 elfz0fzfz0 10283 difelfznle 10292 elfzo0le 10346 fzonmapblen 10348 fzofzim 10349 fzosplitprm1 10400 rebtwn2zlemstep 10432 qbtwnxr 10437 icogelb 10445 expcl2lemap 10733 expclzaplem 10745 expnegzap 10755 leexp2r 10775 expnbnd 10845 bcval4 10934 bccmpl 10936 elovmpowrd 11072 ccatval2 11092 wrdl1s1 11122 swrdsb0eq 11156 swrdccatin1 11216 pfxccatpfx2 11228 absexpzap 11506 divalgb 12351 ndvdssub 12356 dvdsgcd 12448 dfgcd2 12450 rplpwr 12463 nnmindc 12470 lcmgcdlem 12514 coprmdvds1 12528 qredeq 12533 prmdvdsexpr 12587 nnnn0modprm0 12693 pcexp 12747 difsqpwdvds 12776 prmpwdvds 12793 elrestr 13194 isnmgm 13307 grpasscan1 13510 grpinvnz 13518 mulgneg2 13607 dvdsrmul1 13979 dvdsunit 13989 lmodlema 14169 mopni 15069 sincosq1lem 15412 rpcxpmul2 15500 logbgcd1irr 15554 gausslemma2dlem1a 15650 gausslemma2dlem2 15654 gausslemma2dlem4 15656 2lgsoddprmlem3 15703 uhgredgrnv 15844 |
| Copyright terms: Public domain | W3C validator |