| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3impia | Unicode version | ||
| Description: Importation to triple conjunction. (Contributed by NM, 13-Jun-2006.) |
| Ref | Expression |
|---|---|
| 3impia.1 |
|
| Ref | Expression |
|---|---|
| 3impia |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3impia.1 |
. . 3
| |
| 2 | 1 | ex 115 |
. 2
|
| 3 | 2 | 3imp 1217 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 |
| This theorem is referenced by: mopick2 2161 3gencl 2834 mob2 2983 moi 2986 reupick3 3489 disjne 3545 elpr2elpr 3854 disji2 4075 tz7.2 4445 funopg 5352 fvun1 5700 fvopab6 5731 isores3 5939 ovmpt4g 6127 ovmpos 6128 ov2gf 6129 ofrval 6229 poxp 6378 smoel 6446 tfr1onlemaccex 6494 tfrcllemaccex 6507 nnaass 6631 qsel 6759 xpdom3m 6993 phpm 7027 ctssdc 7280 mkvprop 7325 prarloclem3 7684 aptisr 7966 axpre-apti 8072 axapti 8217 addn0nid 8520 divvalap 8821 letrp1 8995 p1le 8996 zextle 9538 zextlt 9539 btwnnz 9541 gtndiv 9542 uzind2 9559 fzind 9562 iccleub 10127 uzsubsubfz 10243 elfz0fzfz0 10322 difelfznle 10331 elfzo0le 10385 fzonmapblen 10387 fzofzim 10388 fzosplitprm1 10440 rebtwn2zlemstep 10472 qbtwnxr 10477 icogelb 10485 expcl2lemap 10773 expclzaplem 10785 expnegzap 10795 leexp2r 10815 expnbnd 10885 bcval4 10974 bccmpl 10976 elovmpowrd 11113 ccatval2 11133 wrdl1s1 11163 swrdsb0eq 11197 swrdccatin1 11257 pfxccatpfx2 11269 absexpzap 11591 divalgb 12436 ndvdssub 12441 dvdsgcd 12533 dfgcd2 12535 rplpwr 12548 nnmindc 12555 lcmgcdlem 12599 coprmdvds1 12613 qredeq 12618 prmdvdsexpr 12672 nnnn0modprm0 12778 pcexp 12832 difsqpwdvds 12861 prmpwdvds 12878 elrestr 13280 isnmgm 13393 grpasscan1 13596 grpinvnz 13604 mulgneg2 13693 dvdsrmul1 14066 dvdsunit 14076 lmodlema 14256 mopni 15156 sincosq1lem 15499 rpcxpmul2 15587 logbgcd1irr 15641 gausslemma2dlem1a 15737 gausslemma2dlem2 15741 gausslemma2dlem4 15743 2lgsoddprmlem3 15790 uhgredgrnv 15936 usgredg4 16013 uspgr2wlkeqi 16078 |
| Copyright terms: Public domain | W3C validator |