![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 3impia | Unicode version |
Description: Importation to triple conjunction. (Contributed by NM, 13-Jun-2006.) |
Ref | Expression |
---|---|
3impia.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
3impia |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3impia.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | ex 115 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | 2 | 3imp 1195 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 df-3an 982 |
This theorem is referenced by: mopick2 2125 3gencl 2794 mob2 2940 moi 2943 reupick3 3444 disjne 3500 disji2 4022 tz7.2 4385 funopg 5288 fvun1 5623 fvopab6 5654 isores3 5858 ovmpt4g 6041 ovmpos 6042 ov2gf 6043 ofrval 6141 poxp 6285 smoel 6353 tfr1onlemaccex 6401 tfrcllemaccex 6414 nnaass 6538 qsel 6666 xpdom3m 6888 phpm 6921 ctssdc 7172 mkvprop 7217 prarloclem3 7557 aptisr 7839 axpre-apti 7945 axapti 8090 addn0nid 8393 divvalap 8693 letrp1 8867 p1le 8868 zextle 9408 zextlt 9409 btwnnz 9411 gtndiv 9412 uzind2 9429 fzind 9432 iccleub 9997 uzsubsubfz 10113 elfz0fzfz0 10192 difelfznle 10201 elfzo0le 10252 fzonmapblen 10254 fzofzim 10255 fzosplitprm1 10301 rebtwn2zlemstep 10321 qbtwnxr 10326 icogelb 10334 expcl2lemap 10622 expclzaplem 10634 expnegzap 10644 leexp2r 10664 expnbnd 10734 bcval4 10823 bccmpl 10825 elovmpowrd 10955 absexpzap 11224 divalgb 12066 ndvdssub 12071 dvdsgcd 12149 dfgcd2 12151 rplpwr 12164 nnmindc 12171 lcmgcdlem 12215 coprmdvds1 12229 qredeq 12234 prmdvdsexpr 12288 nnnn0modprm0 12393 pcexp 12447 difsqpwdvds 12476 prmpwdvds 12493 elrestr 12858 isnmgm 12943 grpasscan1 13135 grpinvnz 13143 mulgneg2 13226 dvdsrmul1 13598 dvdsunit 13608 lmodlema 13788 mopni 14650 sincosq1lem 14960 logbgcd1irr 15099 gausslemma2dlem1a 15174 gausslemma2dlem2 15178 gausslemma2dlem4 15180 2lgsoddprmlem3 15199 |
Copyright terms: Public domain | W3C validator |