| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3impia | Unicode version | ||
| Description: Importation to triple conjunction. (Contributed by NM, 13-Jun-2006.) |
| Ref | Expression |
|---|---|
| 3impia.1 |
|
| Ref | Expression |
|---|---|
| 3impia |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3impia.1 |
. . 3
| |
| 2 | 1 | ex 115 |
. 2
|
| 3 | 2 | 3imp 1196 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 983 |
| This theorem is referenced by: mopick2 2137 3gencl 2806 mob2 2953 moi 2956 reupick3 3458 disjne 3514 disji2 4037 tz7.2 4401 funopg 5305 fvun1 5645 fvopab6 5676 isores3 5884 ovmpt4g 6068 ovmpos 6069 ov2gf 6070 ofrval 6169 poxp 6318 smoel 6386 tfr1onlemaccex 6434 tfrcllemaccex 6447 nnaass 6571 qsel 6699 xpdom3m 6929 phpm 6962 ctssdc 7215 mkvprop 7260 prarloclem3 7610 aptisr 7892 axpre-apti 7998 axapti 8143 addn0nid 8446 divvalap 8747 letrp1 8921 p1le 8922 zextle 9464 zextlt 9465 btwnnz 9467 gtndiv 9468 uzind2 9485 fzind 9488 iccleub 10053 uzsubsubfz 10169 elfz0fzfz0 10248 difelfznle 10257 elfzo0le 10309 fzonmapblen 10311 fzofzim 10312 fzosplitprm1 10363 rebtwn2zlemstep 10395 qbtwnxr 10400 icogelb 10408 expcl2lemap 10696 expclzaplem 10708 expnegzap 10718 leexp2r 10738 expnbnd 10808 bcval4 10897 bccmpl 10899 elovmpowrd 11035 ccatval2 11054 wrdl1s1 11084 swrdsb0eq 11118 absexpzap 11391 divalgb 12236 ndvdssub 12241 dvdsgcd 12333 dfgcd2 12335 rplpwr 12348 nnmindc 12355 lcmgcdlem 12399 coprmdvds1 12413 qredeq 12418 prmdvdsexpr 12472 nnnn0modprm0 12578 pcexp 12632 difsqpwdvds 12661 prmpwdvds 12678 elrestr 13079 isnmgm 13192 grpasscan1 13395 grpinvnz 13403 mulgneg2 13492 dvdsrmul1 13864 dvdsunit 13874 lmodlema 14054 mopni 14954 sincosq1lem 15297 rpcxpmul2 15385 logbgcd1irr 15439 gausslemma2dlem1a 15535 gausslemma2dlem2 15539 gausslemma2dlem4 15541 2lgsoddprmlem3 15588 |
| Copyright terms: Public domain | W3C validator |