Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 3impia | Unicode version |
Description: Importation to triple conjunction. (Contributed by NM, 13-Jun-2006.) |
Ref | Expression |
---|---|
3impia.1 |
Ref | Expression |
---|---|
3impia |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3impia.1 | . . 3 | |
2 | 1 | ex 114 | . 2 |
3 | 2 | 3imp 1183 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 w3a 968 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 df-3an 970 |
This theorem is referenced by: mopick2 2097 3gencl 2760 mob2 2906 moi 2909 reupick3 3407 disjne 3462 disji2 3975 tz7.2 4332 funopg 5222 fvun1 5552 fvopab6 5582 isores3 5783 ovmpt4g 5964 ovmpos 5965 ov2gf 5966 ofrval 6060 poxp 6200 smoel 6268 tfr1onlemaccex 6316 tfrcllemaccex 6329 nnaass 6453 qsel 6578 xpdom3m 6800 phpm 6831 ctssdc 7078 mkvprop 7122 prarloclem3 7438 aptisr 7720 axpre-apti 7826 axapti 7969 addn0nid 8272 divvalap 8570 letrp1 8743 p1le 8744 zextle 9282 zextlt 9283 btwnnz 9285 gtndiv 9286 uzind2 9303 fzind 9306 iccleub 9867 uzsubsubfz 9982 elfz0fzfz0 10061 difelfznle 10070 elfzo0le 10120 fzonmapblen 10122 fzofzim 10123 fzosplitprm1 10169 rebtwn2zlemstep 10188 qbtwnxr 10193 icogelb 10201 expcl2lemap 10467 expclzaplem 10479 expnegzap 10489 leexp2r 10509 expnbnd 10578 bcval4 10665 bccmpl 10667 absexpzap 11022 divalgb 11862 ndvdssub 11867 dvdsgcd 11945 dfgcd2 11947 rplpwr 11960 nnmindc 11967 lcmgcdlem 12009 coprmdvds1 12023 qredeq 12028 prmdvdsexpr 12082 nnnn0modprm0 12187 pcexp 12241 difsqpwdvds 12269 prmpwdvds 12285 elrestr 12564 isnmgm 12591 mopni 13122 sincosq1lem 13386 logbgcd1irr 13525 |
Copyright terms: Public domain | W3C validator |