Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  reupick3 GIF version

Theorem reupick3 3392
 Description: Restricted uniqueness "picks" a member of a subclass. (Contributed by Mario Carneiro, 19-Nov-2016.)
Assertion
Ref Expression
reupick3 ((∃!𝑥𝐴 𝜑 ∧ ∃𝑥𝐴 (𝜑𝜓) ∧ 𝑥𝐴) → (𝜑𝜓))
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥)

Proof of Theorem reupick3
StepHypRef Expression
1 df-reu 2442 . . . 4 (∃!𝑥𝐴 𝜑 ↔ ∃!𝑥(𝑥𝐴𝜑))
2 df-rex 2441 . . . . 5 (∃𝑥𝐴 (𝜑𝜓) ↔ ∃𝑥(𝑥𝐴 ∧ (𝜑𝜓)))
3 anass 399 . . . . . 6 (((𝑥𝐴𝜑) ∧ 𝜓) ↔ (𝑥𝐴 ∧ (𝜑𝜓)))
43exbii 1585 . . . . 5 (∃𝑥((𝑥𝐴𝜑) ∧ 𝜓) ↔ ∃𝑥(𝑥𝐴 ∧ (𝜑𝜓)))
52, 4bitr4i 186 . . . 4 (∃𝑥𝐴 (𝜑𝜓) ↔ ∃𝑥((𝑥𝐴𝜑) ∧ 𝜓))
6 eupick 2085 . . . 4 ((∃!𝑥(𝑥𝐴𝜑) ∧ ∃𝑥((𝑥𝐴𝜑) ∧ 𝜓)) → ((𝑥𝐴𝜑) → 𝜓))
71, 5, 6syl2anb 289 . . 3 ((∃!𝑥𝐴 𝜑 ∧ ∃𝑥𝐴 (𝜑𝜓)) → ((𝑥𝐴𝜑) → 𝜓))
87expd 256 . 2 ((∃!𝑥𝐴 𝜑 ∧ ∃𝑥𝐴 (𝜑𝜓)) → (𝑥𝐴 → (𝜑𝜓)))
983impia 1182 1 ((∃!𝑥𝐴 𝜑 ∧ ∃𝑥𝐴 (𝜑𝜓) ∧ 𝑥𝐴) → (𝜑𝜓))
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 103   ∧ w3a 963  ∃wex 1472  ∃!weu 2006   ∈ wcel 2128  ∃wrex 2436  ∃!wreu 2437 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515 This theorem depends on definitions:  df-bi 116  df-3an 965  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-rex 2441  df-reu 2442 This theorem is referenced by:  reupick2  3393
 Copyright terms: Public domain W3C validator