![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > reupick3 | GIF version |
Description: Restricted uniqueness "picks" a member of a subclass. (Contributed by Mario Carneiro, 19-Nov-2016.) |
Ref | Expression |
---|---|
reupick3 | ⊢ ((∃!𝑥 ∈ 𝐴 𝜑 ∧ ∃𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) ∧ 𝑥 ∈ 𝐴) → (𝜑 → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-reu 2462 | . . . 4 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ ∃!𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
2 | df-rex 2461 | . . . . 5 ⊢ (∃𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ (𝜑 ∧ 𝜓))) | |
3 | anass 401 | . . . . . 6 ⊢ (((𝑥 ∈ 𝐴 ∧ 𝜑) ∧ 𝜓) ↔ (𝑥 ∈ 𝐴 ∧ (𝜑 ∧ 𝜓))) | |
4 | 3 | exbii 1605 | . . . . 5 ⊢ (∃𝑥((𝑥 ∈ 𝐴 ∧ 𝜑) ∧ 𝜓) ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ (𝜑 ∧ 𝜓))) |
5 | 2, 4 | bitr4i 187 | . . . 4 ⊢ (∃𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ ∃𝑥((𝑥 ∈ 𝐴 ∧ 𝜑) ∧ 𝜓)) |
6 | eupick 2105 | . . . 4 ⊢ ((∃!𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) ∧ ∃𝑥((𝑥 ∈ 𝐴 ∧ 𝜑) ∧ 𝜓)) → ((𝑥 ∈ 𝐴 ∧ 𝜑) → 𝜓)) | |
7 | 1, 5, 6 | syl2anb 291 | . . 3 ⊢ ((∃!𝑥 ∈ 𝐴 𝜑 ∧ ∃𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓)) → ((𝑥 ∈ 𝐴 ∧ 𝜑) → 𝜓)) |
8 | 7 | expd 258 | . 2 ⊢ ((∃!𝑥 ∈ 𝐴 𝜑 ∧ ∃𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓)) → (𝑥 ∈ 𝐴 → (𝜑 → 𝜓))) |
9 | 8 | 3impia 1200 | 1 ⊢ ((∃!𝑥 ∈ 𝐴 𝜑 ∧ ∃𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) ∧ 𝑥 ∈ 𝐴) → (𝜑 → 𝜓)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 978 ∃wex 1492 ∃!weu 2026 ∈ wcel 2148 ∃wrex 2456 ∃!wreu 2457 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-rex 2461 df-reu 2462 |
This theorem is referenced by: reupick2 3423 |
Copyright terms: Public domain | W3C validator |