ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reupick3 GIF version

Theorem reupick3 3444
Description: Restricted uniqueness "picks" a member of a subclass. (Contributed by Mario Carneiro, 19-Nov-2016.)
Assertion
Ref Expression
reupick3 ((∃!𝑥𝐴 𝜑 ∧ ∃𝑥𝐴 (𝜑𝜓) ∧ 𝑥𝐴) → (𝜑𝜓))
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥)

Proof of Theorem reupick3
StepHypRef Expression
1 df-reu 2479 . . . 4 (∃!𝑥𝐴 𝜑 ↔ ∃!𝑥(𝑥𝐴𝜑))
2 df-rex 2478 . . . . 5 (∃𝑥𝐴 (𝜑𝜓) ↔ ∃𝑥(𝑥𝐴 ∧ (𝜑𝜓)))
3 anass 401 . . . . . 6 (((𝑥𝐴𝜑) ∧ 𝜓) ↔ (𝑥𝐴 ∧ (𝜑𝜓)))
43exbii 1616 . . . . 5 (∃𝑥((𝑥𝐴𝜑) ∧ 𝜓) ↔ ∃𝑥(𝑥𝐴 ∧ (𝜑𝜓)))
52, 4bitr4i 187 . . . 4 (∃𝑥𝐴 (𝜑𝜓) ↔ ∃𝑥((𝑥𝐴𝜑) ∧ 𝜓))
6 eupick 2121 . . . 4 ((∃!𝑥(𝑥𝐴𝜑) ∧ ∃𝑥((𝑥𝐴𝜑) ∧ 𝜓)) → ((𝑥𝐴𝜑) → 𝜓))
71, 5, 6syl2anb 291 . . 3 ((∃!𝑥𝐴 𝜑 ∧ ∃𝑥𝐴 (𝜑𝜓)) → ((𝑥𝐴𝜑) → 𝜓))
87expd 258 . 2 ((∃!𝑥𝐴 𝜑 ∧ ∃𝑥𝐴 (𝜑𝜓)) → (𝑥𝐴 → (𝜑𝜓)))
983impia 1202 1 ((∃!𝑥𝐴 𝜑 ∧ ∃𝑥𝐴 (𝜑𝜓) ∧ 𝑥𝐴) → (𝜑𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 980  wex 1503  ∃!weu 2042  wcel 2164  wrex 2473  ∃!wreu 2474
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546
This theorem depends on definitions:  df-bi 117  df-3an 982  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-rex 2478  df-reu 2479
This theorem is referenced by:  reupick2  3445
  Copyright terms: Public domain W3C validator