ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  finexdc Unicode version

Theorem finexdc 6963
Description: Decidability of existence, over a finite set and defined by a decidable proposition. (Contributed by Jim Kingdon, 12-Jul-2022.)
Assertion
Ref Expression
finexdc  |-  ( ( A  e.  Fin  /\  A. x  e.  A DECID  ph )  -> DECID  E. x  e.  A  ph )
Distinct variable group:    x, A
Allowed substitution hint:    ph( x)

Proof of Theorem finexdc
Dummy variables  w  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rexeq 2694 . . 3  |-  ( w  =  (/)  ->  ( E. x  e.  w  ph  <->  E. x  e.  (/)  ph )
)
21dcbid 839 . 2  |-  ( w  =  (/)  ->  (DECID  E. x  e.  w  ph  <-> DECID  E. x  e.  (/)  ph ) )
3 rexeq 2694 . . 3  |-  ( w  =  y  ->  ( E. x  e.  w  ph  <->  E. x  e.  y  ph ) )
43dcbid 839 . 2  |-  ( w  =  y  ->  (DECID  E. x  e.  w  ph  <-> DECID  E. x  e.  y  ph ) )
5 rexeq 2694 . . 3  |-  ( w  =  ( y  u. 
{ z } )  ->  ( E. x  e.  w  ph  <->  E. x  e.  ( y  u.  {
z } ) ph ) )
65dcbid 839 . 2  |-  ( w  =  ( y  u. 
{ z } )  ->  (DECID 
E. x  e.  w  ph  <-> DECID  E. x  e.  ( y  u.  {
z } ) ph ) )
7 rexeq 2694 . . 3  |-  ( w  =  A  ->  ( E. x  e.  w  ph  <->  E. x  e.  A  ph ) )
87dcbid 839 . 2  |-  ( w  =  A  ->  (DECID  E. x  e.  w  ph  <-> DECID  E. x  e.  A  ph ) )
9 rex0 3468 . . . . 5  |-  -.  E. x  e.  (/)  ph
109olci 733 . . . 4  |-  ( E. x  e.  (/)  ph  \/  -.  E. x  e.  (/)  ph )
11 df-dc 836 . . . 4  |-  (DECID  E. x  e.  (/)  ph  <->  ( E. x  e.  (/)  ph  \/  -.  E. x  e.  (/)  ph )
)
1210, 11mpbir 146 . . 3  |- DECID  E. x  e.  (/)  ph
1312a1i 9 . 2  |-  ( ( A  e.  Fin  /\  A. x  e.  A DECID  ph )  -> DECID  E. x  e.  (/)  ph )
14 simpr 110 . . . . . . . . 9  |-  ( ( ( ( ( ( A  e.  Fin  /\  A. x  e.  A DECID  ph )  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\ DECID  E. x  e.  y  ph )  /\  [ z  /  x ] ph )  ->  [ z  /  x ] ph )
15 sbsbc 2993 . . . . . . . . . 10  |-  ( [ z  /  x ] ph 
<-> 
[. z  /  x ]. ph )
16 rexsns 3661 . . . . . . . . . 10  |-  ( E. x  e.  { z } ph  <->  [. z  /  x ]. ph )
1715, 16bitr4i 187 . . . . . . . . 9  |-  ( [ z  /  x ] ph 
<->  E. x  e.  {
z } ph )
1814, 17sylib 122 . . . . . . . 8  |-  ( ( ( ( ( ( A  e.  Fin  /\  A. x  e.  A DECID  ph )  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\ DECID  E. x  e.  y  ph )  /\  [ z  /  x ] ph )  ->  E. x  e.  { z } ph )
1918olcd 735 . . . . . . 7  |-  ( ( ( ( ( ( A  e.  Fin  /\  A. x  e.  A DECID  ph )  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\ DECID  E. x  e.  y  ph )  /\  [ z  /  x ] ph )  ->  ( E. x  e.  y  ph  \/  E. x  e.  {
z } ph )
)
20 rexun 3343 . . . . . . 7  |-  ( E. x  e.  ( y  u.  { z } ) ph  <->  ( E. x  e.  y  ph  \/  E. x  e.  {
z } ph )
)
2119, 20sylibr 134 . . . . . 6  |-  ( ( ( ( ( ( A  e.  Fin  /\  A. x  e.  A DECID  ph )  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\ DECID  E. x  e.  y  ph )  /\  [ z  /  x ] ph )  ->  E. x  e.  ( y  u.  {
z } ) ph )
2221orcd 734 . . . . 5  |-  ( ( ( ( ( ( A  e.  Fin  /\  A. x  e.  A DECID  ph )  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\ DECID  E. x  e.  y  ph )  /\  [ z  /  x ] ph )  ->  ( E. x  e.  ( y  u.  { z } ) ph  \/  -.  E. x  e.  ( y  u.  { z } ) ph ) )
23 df-dc 836 . . . . 5  |-  (DECID  E. x  e.  ( y  u.  {
z } ) ph  <->  ( E. x  e.  ( y  u.  { z } ) ph  \/  -.  E. x  e.  ( y  u.  { z } ) ph )
)
2422, 23sylibr 134 . . . 4  |-  ( ( ( ( ( ( A  e.  Fin  /\  A. x  e.  A DECID  ph )  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\ DECID  E. x  e.  y  ph )  /\  [ z  /  x ] ph )  -> DECID  E. x  e.  ( y  u.  { z } ) ph )
25 simpr 110 . . . . . . . . 9  |-  ( ( ( ( ( ( ( A  e.  Fin  /\ 
A. x  e.  A DECID  ph )  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\ DECID  E. x  e.  y  ph )  /\  -.  [ z  /  x ] ph )  /\  E. x  e.  y  ph )  ->  E. x  e.  y 
ph )
2625orcd 734 . . . . . . . 8  |-  ( ( ( ( ( ( ( A  e.  Fin  /\ 
A. x  e.  A DECID  ph )  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\ DECID  E. x  e.  y  ph )  /\  -.  [ z  /  x ] ph )  /\  E. x  e.  y  ph )  ->  ( E. x  e.  y  ph  \/  E. x  e.  { z } ph ) )
2726, 20sylibr 134 . . . . . . 7  |-  ( ( ( ( ( ( ( A  e.  Fin  /\ 
A. x  e.  A DECID  ph )  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\ DECID  E. x  e.  y  ph )  /\  -.  [ z  /  x ] ph )  /\  E. x  e.  y  ph )  ->  E. x  e.  ( y  u.  { z } ) ph )
2827orcd 734 . . . . . 6  |-  ( ( ( ( ( ( ( A  e.  Fin  /\ 
A. x  e.  A DECID  ph )  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\ DECID  E. x  e.  y  ph )  /\  -.  [ z  /  x ] ph )  /\  E. x  e.  y  ph )  ->  ( E. x  e.  ( y  u.  {
z } ) ph  \/  -.  E. x  e.  ( y  u.  {
z } ) ph ) )
2928, 23sylibr 134 . . . . 5  |-  ( ( ( ( ( ( ( A  e.  Fin  /\ 
A. x  e.  A DECID  ph )  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\ DECID  E. x  e.  y  ph )  /\  -.  [ z  /  x ] ph )  /\  E. x  e.  y  ph )  -> DECID  E. x  e.  (
y  u.  { z } ) ph )
30 simpr 110 . . . . . . . . 9  |-  ( ( ( ( ( ( ( A  e.  Fin  /\ 
A. x  e.  A DECID  ph )  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\ DECID  E. x  e.  y  ph )  /\  -.  [ z  /  x ] ph )  /\  -.  E. x  e.  y  ph )  ->  -.  E. x  e.  y  ph )
31 simpr 110 . . . . . . . . . . 11  |-  ( ( ( ( ( ( A  e.  Fin  /\  A. x  e.  A DECID  ph )  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\ DECID  E. x  e.  y  ph )  /\  -.  [ z  /  x ] ph )  ->  -.  [ z  /  x ] ph )
3217notbii 669 . . . . . . . . . . 11  |-  ( -. 
[ z  /  x ] ph  <->  -.  E. x  e.  { z } ph )
3331, 32sylib 122 . . . . . . . . . 10  |-  ( ( ( ( ( ( A  e.  Fin  /\  A. x  e.  A DECID  ph )  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\ DECID  E. x  e.  y  ph )  /\  -.  [ z  /  x ] ph )  ->  -.  E. x  e.  { z } ph )
3433adantr 276 . . . . . . . . 9  |-  ( ( ( ( ( ( ( A  e.  Fin  /\ 
A. x  e.  A DECID  ph )  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\ DECID  E. x  e.  y  ph )  /\  -.  [ z  /  x ] ph )  /\  -.  E. x  e.  y  ph )  ->  -.  E. x  e.  { z } ph )
35 ioran 753 . . . . . . . . 9  |-  ( -.  ( E. x  e.  y  ph  \/  E. x  e.  { z } ph )  <->  ( -.  E. x  e.  y  ph  /\ 
-.  E. x  e.  {
z } ph )
)
3630, 34, 35sylanbrc 417 . . . . . . . 8  |-  ( ( ( ( ( ( ( A  e.  Fin  /\ 
A. x  e.  A DECID  ph )  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\ DECID  E. x  e.  y  ph )  /\  -.  [ z  /  x ] ph )  /\  -.  E. x  e.  y  ph )  ->  -.  ( E. x  e.  y  ph  \/  E. x  e.  {
z } ph )
)
3720notbii 669 . . . . . . . 8  |-  ( -. 
E. x  e.  ( y  u.  { z } ) ph  <->  -.  ( E. x  e.  y  ph  \/  E. x  e. 
{ z } ph ) )
3836, 37sylibr 134 . . . . . . 7  |-  ( ( ( ( ( ( ( A  e.  Fin  /\ 
A. x  e.  A DECID  ph )  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\ DECID  E. x  e.  y  ph )  /\  -.  [ z  /  x ] ph )  /\  -.  E. x  e.  y  ph )  ->  -.  E. x  e.  ( y  u.  {
z } ) ph )
3938olcd 735 . . . . . 6  |-  ( ( ( ( ( ( ( A  e.  Fin  /\ 
A. x  e.  A DECID  ph )  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\ DECID  E. x  e.  y  ph )  /\  -.  [ z  /  x ] ph )  /\  -.  E. x  e.  y  ph )  ->  ( E. x  e.  ( y  u.  {
z } ) ph  \/  -.  E. x  e.  ( y  u.  {
z } ) ph ) )
4039, 23sylibr 134 . . . . 5  |-  ( ( ( ( ( ( ( A  e.  Fin  /\ 
A. x  e.  A DECID  ph )  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\ DECID  E. x  e.  y  ph )  /\  -.  [ z  /  x ] ph )  /\  -.  E. x  e.  y  ph )  -> DECID  E. x  e.  (
y  u.  { z } ) ph )
41 exmiddc 837 . . . . . 6  |-  (DECID  E. x  e.  y  ph  ->  ( E. x  e.  y  ph  \/  -.  E. x  e.  y  ph ) )
4241ad2antlr 489 . . . . 5  |-  ( ( ( ( ( ( A  e.  Fin  /\  A. x  e.  A DECID  ph )  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\ DECID  E. x  e.  y  ph )  /\  -.  [ z  /  x ] ph )  ->  ( E. x  e.  y  ph  \/  -.  E. x  e.  y  ph ) )
4329, 40, 42mpjaodan 799 . . . 4  |-  ( ( ( ( ( ( A  e.  Fin  /\  A. x  e.  A DECID  ph )  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\ DECID  E. x  e.  y  ph )  /\  -.  [ z  /  x ] ph )  -> DECID  E. x  e.  ( y  u.  { z } ) ph )
44 simplrr 536 . . . . . . 7  |-  ( ( ( ( ( A  e.  Fin  /\  A. x  e.  A DECID  ph )  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\ DECID  E. x  e.  y 
ph )  ->  z  e.  ( A  \  y
) )
4544eldifad 3168 . . . . . 6  |-  ( ( ( ( ( A  e.  Fin  /\  A. x  e.  A DECID  ph )  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\ DECID  E. x  e.  y 
ph )  ->  z  e.  A )
46 simp-4r 542 . . . . . 6  |-  ( ( ( ( ( A  e.  Fin  /\  A. x  e.  A DECID  ph )  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\ DECID  E. x  e.  y 
ph )  ->  A. x  e.  A DECID  ph )
47 nfs1v 1958 . . . . . . . 8  |-  F/ x [ z  /  x ] ph
4847nfdc 1673 . . . . . . 7  |-  F/ xDECID  [ z  /  x ] ph
49 sbequ12 1785 . . . . . . . 8  |-  ( x  =  z  ->  ( ph 
<->  [ z  /  x ] ph ) )
5049dcbid 839 . . . . . . 7  |-  ( x  =  z  ->  (DECID  ph  <-> DECID  [ z  /  x ] ph ) )
5148, 50rspc 2862 . . . . . 6  |-  ( z  e.  A  ->  ( A. x  e.  A DECID  ph  -> DECID  [ z  /  x ] ph ) )
5245, 46, 51sylc 62 . . . . 5  |-  ( ( ( ( ( A  e.  Fin  /\  A. x  e.  A DECID  ph )  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\ DECID  E. x  e.  y 
ph )  -> DECID  [ z  /  x ] ph )
53 exmiddc 837 . . . . 5  |-  (DECID  [ z  /  x ] ph  ->  ( [ z  /  x ] ph  \/  -.  [ z  /  x ] ph ) )
5452, 53syl 14 . . . 4  |-  ( ( ( ( ( A  e.  Fin  /\  A. x  e.  A DECID  ph )  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\ DECID  E. x  e.  y 
ph )  ->  ( [ z  /  x ] ph  \/  -.  [
z  /  x ] ph ) )
5524, 43, 54mpjaodan 799 . . 3  |-  ( ( ( ( ( A  e.  Fin  /\  A. x  e.  A DECID  ph )  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\ DECID  E. x  e.  y 
ph )  -> DECID  E. x  e.  ( y  u.  { z } ) ph )
5655ex 115 . 2  |-  ( ( ( ( A  e. 
Fin  /\  A. x  e.  A DECID  ph )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  (DECID 
E. x  e.  y 
ph  -> DECID  E. x  e.  (
y  u.  { z } ) ph )
)
57 simpl 109 . 2  |-  ( ( A  e.  Fin  /\  A. x  e.  A DECID  ph )  ->  A  e.  Fin )
582, 4, 6, 8, 13, 56, 57findcard2sd 6953 1  |-  ( ( A  e.  Fin  /\  A. x  e.  A DECID  ph )  -> DECID  E. x  e.  A  ph )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    \/ wo 709  DECID wdc 835    = wceq 1364   [wsb 1776    e. wcel 2167   A.wral 2475   E.wrex 2476   [.wsbc 2989    \ cdif 3154    u. cun 3155    C_ wss 3157   (/)c0 3450   {csn 3622   Fincfn 6799
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-iord 4401  df-on 4403  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-er 6592  df-en 6800  df-fin 6802
This theorem is referenced by:  dfrex2fin  6964  nninfwlpoimlemg  7241  nninfwlpoimlemginf  7242  4sqleminfi  12566
  Copyright terms: Public domain W3C validator