ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  finexdc Unicode version

Theorem finexdc 6880
Description: Decidability of existence, over a finite set and defined by a decidable proposition. (Contributed by Jim Kingdon, 12-Jul-2022.)
Assertion
Ref Expression
finexdc  |-  ( ( A  e.  Fin  /\  A. x  e.  A DECID  ph )  -> DECID  E. x  e.  A  ph )
Distinct variable group:    x, A
Allowed substitution hint:    ph( x)

Proof of Theorem finexdc
Dummy variables  w  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rexeq 2666 . . 3  |-  ( w  =  (/)  ->  ( E. x  e.  w  ph  <->  E. x  e.  (/)  ph )
)
21dcbid 833 . 2  |-  ( w  =  (/)  ->  (DECID  E. x  e.  w  ph  <-> DECID  E. x  e.  (/)  ph ) )
3 rexeq 2666 . . 3  |-  ( w  =  y  ->  ( E. x  e.  w  ph  <->  E. x  e.  y  ph ) )
43dcbid 833 . 2  |-  ( w  =  y  ->  (DECID  E. x  e.  w  ph  <-> DECID  E. x  e.  y  ph ) )
5 rexeq 2666 . . 3  |-  ( w  =  ( y  u. 
{ z } )  ->  ( E. x  e.  w  ph  <->  E. x  e.  ( y  u.  {
z } ) ph ) )
65dcbid 833 . 2  |-  ( w  =  ( y  u. 
{ z } )  ->  (DECID 
E. x  e.  w  ph  <-> DECID  E. x  e.  ( y  u.  {
z } ) ph ) )
7 rexeq 2666 . . 3  |-  ( w  =  A  ->  ( E. x  e.  w  ph  <->  E. x  e.  A  ph ) )
87dcbid 833 . 2  |-  ( w  =  A  ->  (DECID  E. x  e.  w  ph  <-> DECID  E. x  e.  A  ph ) )
9 rex0 3432 . . . . 5  |-  -.  E. x  e.  (/)  ph
109olci 727 . . . 4  |-  ( E. x  e.  (/)  ph  \/  -.  E. x  e.  (/)  ph )
11 df-dc 830 . . . 4  |-  (DECID  E. x  e.  (/)  ph  <->  ( E. x  e.  (/)  ph  \/  -.  E. x  e.  (/)  ph )
)
1210, 11mpbir 145 . . 3  |- DECID  E. x  e.  (/)  ph
1312a1i 9 . 2  |-  ( ( A  e.  Fin  /\  A. x  e.  A DECID  ph )  -> DECID  E. x  e.  (/)  ph )
14 simpr 109 . . . . . . . . 9  |-  ( ( ( ( ( ( A  e.  Fin  /\  A. x  e.  A DECID  ph )  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\ DECID  E. x  e.  y  ph )  /\  [ z  /  x ] ph )  ->  [ z  /  x ] ph )
15 sbsbc 2959 . . . . . . . . . 10  |-  ( [ z  /  x ] ph 
<-> 
[. z  /  x ]. ph )
16 rexsns 3622 . . . . . . . . . 10  |-  ( E. x  e.  { z } ph  <->  [. z  /  x ]. ph )
1715, 16bitr4i 186 . . . . . . . . 9  |-  ( [ z  /  x ] ph 
<->  E. x  e.  {
z } ph )
1814, 17sylib 121 . . . . . . . 8  |-  ( ( ( ( ( ( A  e.  Fin  /\  A. x  e.  A DECID  ph )  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\ DECID  E. x  e.  y  ph )  /\  [ z  /  x ] ph )  ->  E. x  e.  { z } ph )
1918olcd 729 . . . . . . 7  |-  ( ( ( ( ( ( A  e.  Fin  /\  A. x  e.  A DECID  ph )  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\ DECID  E. x  e.  y  ph )  /\  [ z  /  x ] ph )  ->  ( E. x  e.  y  ph  \/  E. x  e.  {
z } ph )
)
20 rexun 3307 . . . . . . 7  |-  ( E. x  e.  ( y  u.  { z } ) ph  <->  ( E. x  e.  y  ph  \/  E. x  e.  {
z } ph )
)
2119, 20sylibr 133 . . . . . 6  |-  ( ( ( ( ( ( A  e.  Fin  /\  A. x  e.  A DECID  ph )  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\ DECID  E. x  e.  y  ph )  /\  [ z  /  x ] ph )  ->  E. x  e.  ( y  u.  {
z } ) ph )
2221orcd 728 . . . . 5  |-  ( ( ( ( ( ( A  e.  Fin  /\  A. x  e.  A DECID  ph )  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\ DECID  E. x  e.  y  ph )  /\  [ z  /  x ] ph )  ->  ( E. x  e.  ( y  u.  { z } ) ph  \/  -.  E. x  e.  ( y  u.  { z } ) ph ) )
23 df-dc 830 . . . . 5  |-  (DECID  E. x  e.  ( y  u.  {
z } ) ph  <->  ( E. x  e.  ( y  u.  { z } ) ph  \/  -.  E. x  e.  ( y  u.  { z } ) ph )
)
2422, 23sylibr 133 . . . 4  |-  ( ( ( ( ( ( A  e.  Fin  /\  A. x  e.  A DECID  ph )  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\ DECID  E. x  e.  y  ph )  /\  [ z  /  x ] ph )  -> DECID  E. x  e.  ( y  u.  { z } ) ph )
25 simpr 109 . . . . . . . . 9  |-  ( ( ( ( ( ( ( A  e.  Fin  /\ 
A. x  e.  A DECID  ph )  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\ DECID  E. x  e.  y  ph )  /\  -.  [ z  /  x ] ph )  /\  E. x  e.  y  ph )  ->  E. x  e.  y 
ph )
2625orcd 728 . . . . . . . 8  |-  ( ( ( ( ( ( ( A  e.  Fin  /\ 
A. x  e.  A DECID  ph )  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\ DECID  E. x  e.  y  ph )  /\  -.  [ z  /  x ] ph )  /\  E. x  e.  y  ph )  ->  ( E. x  e.  y  ph  \/  E. x  e.  { z } ph ) )
2726, 20sylibr 133 . . . . . . 7  |-  ( ( ( ( ( ( ( A  e.  Fin  /\ 
A. x  e.  A DECID  ph )  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\ DECID  E. x  e.  y  ph )  /\  -.  [ z  /  x ] ph )  /\  E. x  e.  y  ph )  ->  E. x  e.  ( y  u.  { z } ) ph )
2827orcd 728 . . . . . 6  |-  ( ( ( ( ( ( ( A  e.  Fin  /\ 
A. x  e.  A DECID  ph )  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\ DECID  E. x  e.  y  ph )  /\  -.  [ z  /  x ] ph )  /\  E. x  e.  y  ph )  ->  ( E. x  e.  ( y  u.  {
z } ) ph  \/  -.  E. x  e.  ( y  u.  {
z } ) ph ) )
2928, 23sylibr 133 . . . . 5  |-  ( ( ( ( ( ( ( A  e.  Fin  /\ 
A. x  e.  A DECID  ph )  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\ DECID  E. x  e.  y  ph )  /\  -.  [ z  /  x ] ph )  /\  E. x  e.  y  ph )  -> DECID  E. x  e.  (
y  u.  { z } ) ph )
30 simpr 109 . . . . . . . . 9  |-  ( ( ( ( ( ( ( A  e.  Fin  /\ 
A. x  e.  A DECID  ph )  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\ DECID  E. x  e.  y  ph )  /\  -.  [ z  /  x ] ph )  /\  -.  E. x  e.  y  ph )  ->  -.  E. x  e.  y  ph )
31 simpr 109 . . . . . . . . . . 11  |-  ( ( ( ( ( ( A  e.  Fin  /\  A. x  e.  A DECID  ph )  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\ DECID  E. x  e.  y  ph )  /\  -.  [ z  /  x ] ph )  ->  -.  [ z  /  x ] ph )
3217notbii 663 . . . . . . . . . . 11  |-  ( -. 
[ z  /  x ] ph  <->  -.  E. x  e.  { z } ph )
3331, 32sylib 121 . . . . . . . . . 10  |-  ( ( ( ( ( ( A  e.  Fin  /\  A. x  e.  A DECID  ph )  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\ DECID  E. x  e.  y  ph )  /\  -.  [ z  /  x ] ph )  ->  -.  E. x  e.  { z } ph )
3433adantr 274 . . . . . . . . 9  |-  ( ( ( ( ( ( ( A  e.  Fin  /\ 
A. x  e.  A DECID  ph )  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\ DECID  E. x  e.  y  ph )  /\  -.  [ z  /  x ] ph )  /\  -.  E. x  e.  y  ph )  ->  -.  E. x  e.  { z } ph )
35 ioran 747 . . . . . . . . 9  |-  ( -.  ( E. x  e.  y  ph  \/  E. x  e.  { z } ph )  <->  ( -.  E. x  e.  y  ph  /\ 
-.  E. x  e.  {
z } ph )
)
3630, 34, 35sylanbrc 415 . . . . . . . 8  |-  ( ( ( ( ( ( ( A  e.  Fin  /\ 
A. x  e.  A DECID  ph )  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\ DECID  E. x  e.  y  ph )  /\  -.  [ z  /  x ] ph )  /\  -.  E. x  e.  y  ph )  ->  -.  ( E. x  e.  y  ph  \/  E. x  e.  {
z } ph )
)
3720notbii 663 . . . . . . . 8  |-  ( -. 
E. x  e.  ( y  u.  { z } ) ph  <->  -.  ( E. x  e.  y  ph  \/  E. x  e. 
{ z } ph ) )
3836, 37sylibr 133 . . . . . . 7  |-  ( ( ( ( ( ( ( A  e.  Fin  /\ 
A. x  e.  A DECID  ph )  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\ DECID  E. x  e.  y  ph )  /\  -.  [ z  /  x ] ph )  /\  -.  E. x  e.  y  ph )  ->  -.  E. x  e.  ( y  u.  {
z } ) ph )
3938olcd 729 . . . . . 6  |-  ( ( ( ( ( ( ( A  e.  Fin  /\ 
A. x  e.  A DECID  ph )  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\ DECID  E. x  e.  y  ph )  /\  -.  [ z  /  x ] ph )  /\  -.  E. x  e.  y  ph )  ->  ( E. x  e.  ( y  u.  {
z } ) ph  \/  -.  E. x  e.  ( y  u.  {
z } ) ph ) )
4039, 23sylibr 133 . . . . 5  |-  ( ( ( ( ( ( ( A  e.  Fin  /\ 
A. x  e.  A DECID  ph )  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\ DECID  E. x  e.  y  ph )  /\  -.  [ z  /  x ] ph )  /\  -.  E. x  e.  y  ph )  -> DECID  E. x  e.  (
y  u.  { z } ) ph )
41 exmiddc 831 . . . . . 6  |-  (DECID  E. x  e.  y  ph  ->  ( E. x  e.  y  ph  \/  -.  E. x  e.  y  ph ) )
4241ad2antlr 486 . . . . 5  |-  ( ( ( ( ( ( A  e.  Fin  /\  A. x  e.  A DECID  ph )  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\ DECID  E. x  e.  y  ph )  /\  -.  [ z  /  x ] ph )  ->  ( E. x  e.  y  ph  \/  -.  E. x  e.  y  ph ) )
4329, 40, 42mpjaodan 793 . . . 4  |-  ( ( ( ( ( ( A  e.  Fin  /\  A. x  e.  A DECID  ph )  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\ DECID  E. x  e.  y  ph )  /\  -.  [ z  /  x ] ph )  -> DECID  E. x  e.  ( y  u.  { z } ) ph )
44 simplrr 531 . . . . . . 7  |-  ( ( ( ( ( A  e.  Fin  /\  A. x  e.  A DECID  ph )  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\ DECID  E. x  e.  y 
ph )  ->  z  e.  ( A  \  y
) )
4544eldifad 3132 . . . . . 6  |-  ( ( ( ( ( A  e.  Fin  /\  A. x  e.  A DECID  ph )  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\ DECID  E. x  e.  y 
ph )  ->  z  e.  A )
46 simp-4r 537 . . . . . 6  |-  ( ( ( ( ( A  e.  Fin  /\  A. x  e.  A DECID  ph )  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\ DECID  E. x  e.  y 
ph )  ->  A. x  e.  A DECID  ph )
47 nfs1v 1932 . . . . . . . 8  |-  F/ x [ z  /  x ] ph
4847nfdc 1652 . . . . . . 7  |-  F/ xDECID  [ z  /  x ] ph
49 sbequ12 1764 . . . . . . . 8  |-  ( x  =  z  ->  ( ph 
<->  [ z  /  x ] ph ) )
5049dcbid 833 . . . . . . 7  |-  ( x  =  z  ->  (DECID  ph  <-> DECID  [ z  /  x ] ph ) )
5148, 50rspc 2828 . . . . . 6  |-  ( z  e.  A  ->  ( A. x  e.  A DECID  ph  -> DECID  [ z  /  x ] ph ) )
5245, 46, 51sylc 62 . . . . 5  |-  ( ( ( ( ( A  e.  Fin  /\  A. x  e.  A DECID  ph )  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\ DECID  E. x  e.  y 
ph )  -> DECID  [ z  /  x ] ph )
53 exmiddc 831 . . . . 5  |-  (DECID  [ z  /  x ] ph  ->  ( [ z  /  x ] ph  \/  -.  [ z  /  x ] ph ) )
5452, 53syl 14 . . . 4  |-  ( ( ( ( ( A  e.  Fin  /\  A. x  e.  A DECID  ph )  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\ DECID  E. x  e.  y 
ph )  ->  ( [ z  /  x ] ph  \/  -.  [
z  /  x ] ph ) )
5524, 43, 54mpjaodan 793 . . 3  |-  ( ( ( ( ( A  e.  Fin  /\  A. x  e.  A DECID  ph )  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\ DECID  E. x  e.  y 
ph )  -> DECID  E. x  e.  ( y  u.  { z } ) ph )
5655ex 114 . 2  |-  ( ( ( ( A  e. 
Fin  /\  A. x  e.  A DECID  ph )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  (DECID 
E. x  e.  y 
ph  -> DECID  E. x  e.  (
y  u.  { z } ) ph )
)
57 simpl 108 . 2  |-  ( ( A  e.  Fin  /\  A. x  e.  A DECID  ph )  ->  A  e.  Fin )
582, 4, 6, 8, 13, 56, 57findcard2sd 6870 1  |-  ( ( A  e.  Fin  /\  A. x  e.  A DECID  ph )  -> DECID  E. x  e.  A  ph )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    \/ wo 703  DECID wdc 829    = wceq 1348   [wsb 1755    e. wcel 2141   A.wral 2448   E.wrex 2449   [.wsbc 2955    \ cdif 3118    u. cun 3119    C_ wss 3121   (/)c0 3414   {csn 3583   Fincfn 6718
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-iord 4351  df-on 4353  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-er 6513  df-en 6719  df-fin 6721
This theorem is referenced by:  dfrex2fin  6881  nninfwlpoimlemg  7151  nninfwlpoimlemginf  7152
  Copyright terms: Public domain W3C validator