ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexcomf GIF version

Theorem rexcomf 2659
Description: Commutation of restricted quantifiers. (Contributed by Mario Carneiro, 14-Oct-2016.)
Hypotheses
Ref Expression
ralcomf.1 𝑦𝐴
ralcomf.2 𝑥𝐵
Assertion
Ref Expression
rexcomf (∃𝑥𝐴𝑦𝐵 𝜑 ↔ ∃𝑦𝐵𝑥𝐴 𝜑)
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦)

Proof of Theorem rexcomf
StepHypRef Expression
1 ancom 266 . . . . 5 ((𝑥𝐴𝑦𝐵) ↔ (𝑦𝐵𝑥𝐴))
21anbi1i 458 . . . 4 (((𝑥𝐴𝑦𝐵) ∧ 𝜑) ↔ ((𝑦𝐵𝑥𝐴) ∧ 𝜑))
322exbii 1620 . . 3 (∃𝑥𝑦((𝑥𝐴𝑦𝐵) ∧ 𝜑) ↔ ∃𝑥𝑦((𝑦𝐵𝑥𝐴) ∧ 𝜑))
4 excom 1678 . . 3 (∃𝑥𝑦((𝑦𝐵𝑥𝐴) ∧ 𝜑) ↔ ∃𝑦𝑥((𝑦𝐵𝑥𝐴) ∧ 𝜑))
53, 4bitri 184 . 2 (∃𝑥𝑦((𝑥𝐴𝑦𝐵) ∧ 𝜑) ↔ ∃𝑦𝑥((𝑦𝐵𝑥𝐴) ∧ 𝜑))
6 ralcomf.1 . . 3 𝑦𝐴
76r2exf 2515 . 2 (∃𝑥𝐴𝑦𝐵 𝜑 ↔ ∃𝑥𝑦((𝑥𝐴𝑦𝐵) ∧ 𝜑))
8 ralcomf.2 . . 3 𝑥𝐵
98r2exf 2515 . 2 (∃𝑦𝐵𝑥𝐴 𝜑 ↔ ∃𝑦𝑥((𝑦𝐵𝑥𝐴) ∧ 𝜑))
105, 7, 93bitr4i 212 1 (∃𝑥𝐴𝑦𝐵 𝜑 ↔ ∃𝑦𝐵𝑥𝐴 𝜑)
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105  wex 1506  wcel 2167  wnfc 2326  wrex 2476
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-nf 1475  df-sb 1777  df-cleq 2189  df-clel 2192  df-nfc 2328  df-rex 2481
This theorem is referenced by:  rexcom  2661
  Copyright terms: Public domain W3C validator