ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexcomf GIF version

Theorem rexcomf 2628
Description: Commutation of restricted quantifiers. (Contributed by Mario Carneiro, 14-Oct-2016.)
Hypotheses
Ref Expression
ralcomf.1 𝑦𝐴
ralcomf.2 𝑥𝐵
Assertion
Ref Expression
rexcomf (∃𝑥𝐴𝑦𝐵 𝜑 ↔ ∃𝑦𝐵𝑥𝐴 𝜑)
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦)

Proof of Theorem rexcomf
StepHypRef Expression
1 ancom 264 . . . . 5 ((𝑥𝐴𝑦𝐵) ↔ (𝑦𝐵𝑥𝐴))
21anbi1i 454 . . . 4 (((𝑥𝐴𝑦𝐵) ∧ 𝜑) ↔ ((𝑦𝐵𝑥𝐴) ∧ 𝜑))
322exbii 1594 . . 3 (∃𝑥𝑦((𝑥𝐴𝑦𝐵) ∧ 𝜑) ↔ ∃𝑥𝑦((𝑦𝐵𝑥𝐴) ∧ 𝜑))
4 excom 1652 . . 3 (∃𝑥𝑦((𝑦𝐵𝑥𝐴) ∧ 𝜑) ↔ ∃𝑦𝑥((𝑦𝐵𝑥𝐴) ∧ 𝜑))
53, 4bitri 183 . 2 (∃𝑥𝑦((𝑥𝐴𝑦𝐵) ∧ 𝜑) ↔ ∃𝑦𝑥((𝑦𝐵𝑥𝐴) ∧ 𝜑))
6 ralcomf.1 . . 3 𝑦𝐴
76r2exf 2484 . 2 (∃𝑥𝐴𝑦𝐵 𝜑 ↔ ∃𝑥𝑦((𝑥𝐴𝑦𝐵) ∧ 𝜑))
8 ralcomf.2 . . 3 𝑥𝐵
98r2exf 2484 . 2 (∃𝑦𝐵𝑥𝐴 𝜑 ↔ ∃𝑦𝑥((𝑦𝐵𝑥𝐴) ∧ 𝜑))
105, 7, 93bitr4i 211 1 (∃𝑥𝐴𝑦𝐵 𝜑 ↔ ∃𝑦𝐵𝑥𝐴 𝜑)
Colors of variables: wff set class
Syntax hints:  wa 103  wb 104  wex 1480  wcel 2136  wnfc 2295  wrex 2445
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-nf 1449  df-sb 1751  df-cleq 2158  df-clel 2161  df-nfc 2297  df-rex 2450
This theorem is referenced by:  rexcom  2630
  Copyright terms: Public domain W3C validator