Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > rexcomf | GIF version |
Description: Commutation of restricted quantifiers. (Contributed by Mario Carneiro, 14-Oct-2016.) |
Ref | Expression |
---|---|
ralcomf.1 | ⊢ Ⅎ𝑦𝐴 |
ralcomf.2 | ⊢ Ⅎ𝑥𝐵 |
Ref | Expression |
---|---|
rexcomf | ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 ↔ ∃𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ancom 264 | . . . . 5 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ↔ (𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴)) | |
2 | 1 | anbi1i 455 | . . . 4 ⊢ (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝜑) ↔ ((𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴) ∧ 𝜑)) |
3 | 2 | 2exbii 1599 | . . 3 ⊢ (∃𝑥∃𝑦((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝜑) ↔ ∃𝑥∃𝑦((𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴) ∧ 𝜑)) |
4 | excom 1657 | . . 3 ⊢ (∃𝑥∃𝑦((𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴) ∧ 𝜑) ↔ ∃𝑦∃𝑥((𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴) ∧ 𝜑)) | |
5 | 3, 4 | bitri 183 | . 2 ⊢ (∃𝑥∃𝑦((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝜑) ↔ ∃𝑦∃𝑥((𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴) ∧ 𝜑)) |
6 | ralcomf.1 | . . 3 ⊢ Ⅎ𝑦𝐴 | |
7 | 6 | r2exf 2488 | . 2 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 ↔ ∃𝑥∃𝑦((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝜑)) |
8 | ralcomf.2 | . . 3 ⊢ Ⅎ𝑥𝐵 | |
9 | 8 | r2exf 2488 | . 2 ⊢ (∃𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑦∃𝑥((𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴) ∧ 𝜑)) |
10 | 5, 7, 9 | 3bitr4i 211 | 1 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 ↔ ∃𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝜑) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 ↔ wb 104 ∃wex 1485 ∈ wcel 2141 Ⅎwnfc 2299 ∃wrex 2449 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-nf 1454 df-sb 1756 df-cleq 2163 df-clel 2166 df-nfc 2301 df-rex 2454 |
This theorem is referenced by: rexcom 2634 |
Copyright terms: Public domain | W3C validator |