ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rext GIF version

Theorem rext 4170
Description: A theorem similar to extensionality, requiring the existence of a singleton. Exercise 8 of [TakeutiZaring] p. 16. (Contributed by NM, 10-Aug-1993.)
Assertion
Ref Expression
rext (∀𝑧(𝑥𝑧𝑦𝑧) → 𝑥 = 𝑦)
Distinct variable group:   𝑥,𝑦,𝑧

Proof of Theorem rext
StepHypRef Expression
1 vsnid 3588 . . 3 𝑥 ∈ {𝑥}
2 vex 2712 . . . . 5 𝑥 ∈ V
32snex 4141 . . . 4 {𝑥} ∈ V
4 eleq2 2218 . . . . 5 (𝑧 = {𝑥} → (𝑥𝑧𝑥 ∈ {𝑥}))
5 eleq2 2218 . . . . 5 (𝑧 = {𝑥} → (𝑦𝑧𝑦 ∈ {𝑥}))
64, 5imbi12d 233 . . . 4 (𝑧 = {𝑥} → ((𝑥𝑧𝑦𝑧) ↔ (𝑥 ∈ {𝑥} → 𝑦 ∈ {𝑥})))
73, 6spcv 2803 . . 3 (∀𝑧(𝑥𝑧𝑦𝑧) → (𝑥 ∈ {𝑥} → 𝑦 ∈ {𝑥}))
81, 7mpi 15 . 2 (∀𝑧(𝑥𝑧𝑦𝑧) → 𝑦 ∈ {𝑥})
9 velsn 3573 . . 3 (𝑦 ∈ {𝑥} ↔ 𝑦 = 𝑥)
10 equcomi 1681 . . 3 (𝑦 = 𝑥𝑥 = 𝑦)
119, 10sylbi 120 . 2 (𝑦 ∈ {𝑥} → 𝑥 = 𝑦)
128, 11syl 14 1 (∀𝑧(𝑥𝑧𝑦𝑧) → 𝑥 = 𝑦)
Colors of variables: wff set class
Syntax hints:  wi 4  wal 1330   = wceq 1332  wcel 2125  {csn 3556
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1481  ax-10 1482  ax-11 1483  ax-i12 1484  ax-bndl 1486  ax-4 1487  ax-17 1503  ax-i9 1507  ax-ial 1511  ax-i5r 1512  ax-14 2128  ax-ext 2136  ax-sep 4078  ax-pow 4130
This theorem depends on definitions:  df-bi 116  df-tru 1335  df-nf 1438  df-sb 1740  df-clab 2141  df-cleq 2147  df-clel 2150  df-nfc 2285  df-v 2711  df-in 3104  df-ss 3111  df-pw 3541  df-sn 3562
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator