| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rext | GIF version | ||
| Description: A theorem similar to extensionality, requiring the existence of a singleton. Exercise 8 of [TakeutiZaring] p. 16. (Contributed by NM, 10-Aug-1993.) |
| Ref | Expression |
|---|---|
| rext | ⊢ (∀𝑧(𝑥 ∈ 𝑧 → 𝑦 ∈ 𝑧) → 𝑥 = 𝑦) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vsnid 3670 | . . 3 ⊢ 𝑥 ∈ {𝑥} | |
| 2 | vex 2776 | . . . . 5 ⊢ 𝑥 ∈ V | |
| 3 | 2 | snex 4237 | . . . 4 ⊢ {𝑥} ∈ V |
| 4 | eleq2 2270 | . . . . 5 ⊢ (𝑧 = {𝑥} → (𝑥 ∈ 𝑧 ↔ 𝑥 ∈ {𝑥})) | |
| 5 | eleq2 2270 | . . . . 5 ⊢ (𝑧 = {𝑥} → (𝑦 ∈ 𝑧 ↔ 𝑦 ∈ {𝑥})) | |
| 6 | 4, 5 | imbi12d 234 | . . . 4 ⊢ (𝑧 = {𝑥} → ((𝑥 ∈ 𝑧 → 𝑦 ∈ 𝑧) ↔ (𝑥 ∈ {𝑥} → 𝑦 ∈ {𝑥}))) |
| 7 | 3, 6 | spcv 2871 | . . 3 ⊢ (∀𝑧(𝑥 ∈ 𝑧 → 𝑦 ∈ 𝑧) → (𝑥 ∈ {𝑥} → 𝑦 ∈ {𝑥})) |
| 8 | 1, 7 | mpi 15 | . 2 ⊢ (∀𝑧(𝑥 ∈ 𝑧 → 𝑦 ∈ 𝑧) → 𝑦 ∈ {𝑥}) |
| 9 | velsn 3655 | . . 3 ⊢ (𝑦 ∈ {𝑥} ↔ 𝑦 = 𝑥) | |
| 10 | equcomi 1728 | . . 3 ⊢ (𝑦 = 𝑥 → 𝑥 = 𝑦) | |
| 11 | 9, 10 | sylbi 121 | . 2 ⊢ (𝑦 ∈ {𝑥} → 𝑥 = 𝑦) |
| 12 | 8, 11 | syl 14 | 1 ⊢ (∀𝑧(𝑥 ∈ 𝑧 → 𝑦 ∈ 𝑧) → 𝑥 = 𝑦) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∀wal 1371 = wceq 1373 ∈ wcel 2177 {csn 3638 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 ax-sep 4170 ax-pow 4226 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-v 2775 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |