![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > rext | GIF version |
Description: A theorem similar to extensionality, requiring the existence of a singleton. Exercise 8 of [TakeutiZaring] p. 16. (Contributed by NM, 10-Aug-1993.) |
Ref | Expression |
---|---|
rext | ⊢ (∀𝑧(𝑥 ∈ 𝑧 → 𝑦 ∈ 𝑧) → 𝑥 = 𝑦) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vsnid 3650 | . . 3 ⊢ 𝑥 ∈ {𝑥} | |
2 | vex 2763 | . . . . 5 ⊢ 𝑥 ∈ V | |
3 | 2 | snex 4214 | . . . 4 ⊢ {𝑥} ∈ V |
4 | eleq2 2257 | . . . . 5 ⊢ (𝑧 = {𝑥} → (𝑥 ∈ 𝑧 ↔ 𝑥 ∈ {𝑥})) | |
5 | eleq2 2257 | . . . . 5 ⊢ (𝑧 = {𝑥} → (𝑦 ∈ 𝑧 ↔ 𝑦 ∈ {𝑥})) | |
6 | 4, 5 | imbi12d 234 | . . . 4 ⊢ (𝑧 = {𝑥} → ((𝑥 ∈ 𝑧 → 𝑦 ∈ 𝑧) ↔ (𝑥 ∈ {𝑥} → 𝑦 ∈ {𝑥}))) |
7 | 3, 6 | spcv 2854 | . . 3 ⊢ (∀𝑧(𝑥 ∈ 𝑧 → 𝑦 ∈ 𝑧) → (𝑥 ∈ {𝑥} → 𝑦 ∈ {𝑥})) |
8 | 1, 7 | mpi 15 | . 2 ⊢ (∀𝑧(𝑥 ∈ 𝑧 → 𝑦 ∈ 𝑧) → 𝑦 ∈ {𝑥}) |
9 | velsn 3635 | . . 3 ⊢ (𝑦 ∈ {𝑥} ↔ 𝑦 = 𝑥) | |
10 | equcomi 1715 | . . 3 ⊢ (𝑦 = 𝑥 → 𝑥 = 𝑦) | |
11 | 9, 10 | sylbi 121 | . 2 ⊢ (𝑦 ∈ {𝑥} → 𝑥 = 𝑦) |
12 | 8, 11 | syl 14 | 1 ⊢ (∀𝑧(𝑥 ∈ 𝑧 → 𝑦 ∈ 𝑧) → 𝑥 = 𝑦) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∀wal 1362 = wceq 1364 ∈ wcel 2164 {csn 3618 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-v 2762 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |