ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rext GIF version

Theorem rext 4258
Description: A theorem similar to extensionality, requiring the existence of a singleton. Exercise 8 of [TakeutiZaring] p. 16. (Contributed by NM, 10-Aug-1993.)
Assertion
Ref Expression
rext (∀𝑧(𝑥𝑧𝑦𝑧) → 𝑥 = 𝑦)
Distinct variable group:   𝑥,𝑦,𝑧

Proof of Theorem rext
StepHypRef Expression
1 vsnid 3664 . . 3 𝑥 ∈ {𝑥}
2 vex 2774 . . . . 5 𝑥 ∈ V
32snex 4228 . . . 4 {𝑥} ∈ V
4 eleq2 2268 . . . . 5 (𝑧 = {𝑥} → (𝑥𝑧𝑥 ∈ {𝑥}))
5 eleq2 2268 . . . . 5 (𝑧 = {𝑥} → (𝑦𝑧𝑦 ∈ {𝑥}))
64, 5imbi12d 234 . . . 4 (𝑧 = {𝑥} → ((𝑥𝑧𝑦𝑧) ↔ (𝑥 ∈ {𝑥} → 𝑦 ∈ {𝑥})))
73, 6spcv 2866 . . 3 (∀𝑧(𝑥𝑧𝑦𝑧) → (𝑥 ∈ {𝑥} → 𝑦 ∈ {𝑥}))
81, 7mpi 15 . 2 (∀𝑧(𝑥𝑧𝑦𝑧) → 𝑦 ∈ {𝑥})
9 velsn 3649 . . 3 (𝑦 ∈ {𝑥} ↔ 𝑦 = 𝑥)
10 equcomi 1726 . . 3 (𝑦 = 𝑥𝑥 = 𝑦)
119, 10sylbi 121 . 2 (𝑦 ∈ {𝑥} → 𝑥 = 𝑦)
128, 11syl 14 1 (∀𝑧(𝑥𝑧𝑦𝑧) → 𝑥 = 𝑦)
Colors of variables: wff set class
Syntax hints:  wi 4  wal 1370   = wceq 1372  wcel 2175  {csn 3632
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217
This theorem depends on definitions:  df-bi 117  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-v 2773  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator