ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rext GIF version

Theorem rext 4300
Description: A theorem similar to extensionality, requiring the existence of a singleton. Exercise 8 of [TakeutiZaring] p. 16. (Contributed by NM, 10-Aug-1993.)
Assertion
Ref Expression
rext (∀𝑧(𝑥𝑧𝑦𝑧) → 𝑥 = 𝑦)
Distinct variable group:   𝑥,𝑦,𝑧

Proof of Theorem rext
StepHypRef Expression
1 vsnid 3698 . . 3 𝑥 ∈ {𝑥}
2 vex 2802 . . . . 5 𝑥 ∈ V
32snex 4268 . . . 4 {𝑥} ∈ V
4 eleq2 2293 . . . . 5 (𝑧 = {𝑥} → (𝑥𝑧𝑥 ∈ {𝑥}))
5 eleq2 2293 . . . . 5 (𝑧 = {𝑥} → (𝑦𝑧𝑦 ∈ {𝑥}))
64, 5imbi12d 234 . . . 4 (𝑧 = {𝑥} → ((𝑥𝑧𝑦𝑧) ↔ (𝑥 ∈ {𝑥} → 𝑦 ∈ {𝑥})))
73, 6spcv 2897 . . 3 (∀𝑧(𝑥𝑧𝑦𝑧) → (𝑥 ∈ {𝑥} → 𝑦 ∈ {𝑥}))
81, 7mpi 15 . 2 (∀𝑧(𝑥𝑧𝑦𝑧) → 𝑦 ∈ {𝑥})
9 velsn 3683 . . 3 (𝑦 ∈ {𝑥} ↔ 𝑦 = 𝑥)
10 equcomi 1750 . . 3 (𝑦 = 𝑥𝑥 = 𝑦)
119, 10sylbi 121 . 2 (𝑦 ∈ {𝑥} → 𝑥 = 𝑦)
128, 11syl 14 1 (∀𝑧(𝑥𝑧𝑦𝑧) → 𝑥 = 𝑦)
Colors of variables: wff set class
Syntax hints:  wi 4  wal 1393   = wceq 1395  wcel 2200  {csn 3666
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator