ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rext GIF version

Theorem rext 4267
Description: A theorem similar to extensionality, requiring the existence of a singleton. Exercise 8 of [TakeutiZaring] p. 16. (Contributed by NM, 10-Aug-1993.)
Assertion
Ref Expression
rext (∀𝑧(𝑥𝑧𝑦𝑧) → 𝑥 = 𝑦)
Distinct variable group:   𝑥,𝑦,𝑧

Proof of Theorem rext
StepHypRef Expression
1 vsnid 3670 . . 3 𝑥 ∈ {𝑥}
2 vex 2776 . . . . 5 𝑥 ∈ V
32snex 4237 . . . 4 {𝑥} ∈ V
4 eleq2 2270 . . . . 5 (𝑧 = {𝑥} → (𝑥𝑧𝑥 ∈ {𝑥}))
5 eleq2 2270 . . . . 5 (𝑧 = {𝑥} → (𝑦𝑧𝑦 ∈ {𝑥}))
64, 5imbi12d 234 . . . 4 (𝑧 = {𝑥} → ((𝑥𝑧𝑦𝑧) ↔ (𝑥 ∈ {𝑥} → 𝑦 ∈ {𝑥})))
73, 6spcv 2871 . . 3 (∀𝑧(𝑥𝑧𝑦𝑧) → (𝑥 ∈ {𝑥} → 𝑦 ∈ {𝑥}))
81, 7mpi 15 . 2 (∀𝑧(𝑥𝑧𝑦𝑧) → 𝑦 ∈ {𝑥})
9 velsn 3655 . . 3 (𝑦 ∈ {𝑥} ↔ 𝑦 = 𝑥)
10 equcomi 1728 . . 3 (𝑦 = 𝑥𝑥 = 𝑦)
119, 10sylbi 121 . 2 (𝑦 ∈ {𝑥} → 𝑥 = 𝑦)
128, 11syl 14 1 (∀𝑧(𝑥𝑧𝑦𝑧) → 𝑥 = 𝑦)
Colors of variables: wff set class
Syntax hints:  wi 4  wal 1371   = wceq 1373  wcel 2177  {csn 3638
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2180  ax-ext 2188  ax-sep 4170  ax-pow 4226
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-v 2775  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator