ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rpxrd Unicode version

Theorem rpxrd 9861
Description: A positive real is an extended real. (Contributed by Mario Carneiro, 28-May-2016.)
Hypothesis
Ref Expression
rpred.1  |-  ( ph  ->  A  e.  RR+ )
Assertion
Ref Expression
rpxrd  |-  ( ph  ->  A  e.  RR* )

Proof of Theorem rpxrd
StepHypRef Expression
1 rpred.1 . . 3  |-  ( ph  ->  A  e.  RR+ )
21rpred 9860 . 2  |-  ( ph  ->  A  e.  RR )
32rexrd 8164 1  |-  ( ph  ->  A  e.  RR* )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2180   RR*cxr 8148   RR+crp 9817
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-ext 2191
This theorem depends on definitions:  df-bi 117  df-tru 1378  df-nf 1487  df-sb 1789  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-rab 2497  df-v 2781  df-un 3181  df-in 3183  df-ss 3190  df-xr 8153  df-rp 9818
This theorem is referenced by:  ssblex  15070  metequiv2  15135  metss2lem  15136  metcnp  15151  metcnpi3  15156
  Copyright terms: Public domain W3C validator