ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rpxrd Unicode version

Theorem rpxrd 9901
Description: A positive real is an extended real. (Contributed by Mario Carneiro, 28-May-2016.)
Hypothesis
Ref Expression
rpred.1  |-  ( ph  ->  A  e.  RR+ )
Assertion
Ref Expression
rpxrd  |-  ( ph  ->  A  e.  RR* )

Proof of Theorem rpxrd
StepHypRef Expression
1 rpred.1 . . 3  |-  ( ph  ->  A  e.  RR+ )
21rpred 9900 . 2  |-  ( ph  ->  A  e.  RR )
32rexrd 8204 1  |-  ( ph  ->  A  e.  RR* )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2200   RR*cxr 8188   RR+crp 9857
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-rab 2517  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-xr 8193  df-rp 9858
This theorem is referenced by:  ssblex  15113  metequiv2  15178  metss2lem  15179  metcnp  15194  metcnpi3  15199
  Copyright terms: Public domain W3C validator