Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  rpxrd Unicode version

Theorem rpxrd 9273
 Description: A positive real is an extended real. (Contributed by Mario Carneiro, 28-May-2016.)
Hypothesis
Ref Expression
rpred.1
Assertion
Ref Expression
rpxrd

Proof of Theorem rpxrd
StepHypRef Expression
1 rpred.1 . . 3
21rpred 9272 . 2
32rexrd 7634 1
 Colors of variables: wff set class Syntax hints:   wi 4   wcel 1445  cxr 7618  crp 9233 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 668  ax-5 1388  ax-7 1389  ax-gen 1390  ax-ie1 1434  ax-ie2 1435  ax-8 1447  ax-10 1448  ax-11 1449  ax-i12 1450  ax-bndl 1451  ax-4 1452  ax-17 1471  ax-i9 1475  ax-ial 1479  ax-i5r 1480  ax-ext 2077 This theorem depends on definitions:  df-bi 116  df-tru 1299  df-nf 1402  df-sb 1700  df-clab 2082  df-cleq 2088  df-clel 2091  df-nfc 2224  df-rab 2379  df-v 2635  df-un 3017  df-in 3019  df-ss 3026  df-xr 7623  df-rp 9234 This theorem is referenced by:  ssblex  12217  metequiv2  12282  metss2lem  12283  metcnp  12294  metcnpi3  12299
 Copyright terms: Public domain W3C validator