ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rpxrd Unicode version

Theorem rpxrd 9763
Description: A positive real is an extended real. (Contributed by Mario Carneiro, 28-May-2016.)
Hypothesis
Ref Expression
rpred.1  |-  ( ph  ->  A  e.  RR+ )
Assertion
Ref Expression
rpxrd  |-  ( ph  ->  A  e.  RR* )

Proof of Theorem rpxrd
StepHypRef Expression
1 rpred.1 . . 3  |-  ( ph  ->  A  e.  RR+ )
21rpred 9762 . 2  |-  ( ph  ->  A  e.  RR )
32rexrd 8069 1  |-  ( ph  ->  A  e.  RR* )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2164   RR*cxr 8053   RR+crp 9719
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-rab 2481  df-v 2762  df-un 3157  df-in 3159  df-ss 3166  df-xr 8058  df-rp 9720
This theorem is referenced by:  ssblex  14599  metequiv2  14664  metss2lem  14665  metcnp  14680  metcnpi3  14685
  Copyright terms: Public domain W3C validator