ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  metss2lem Unicode version

Theorem metss2lem 13664
Description: Lemma for metss2 13665. (Contributed by Mario Carneiro, 14-Sep-2015.)
Hypotheses
Ref Expression
metequiv.3  |-  J  =  ( MetOpen `  C )
metequiv.4  |-  K  =  ( MetOpen `  D )
metss2.1  |-  ( ph  ->  C  e.  ( Met `  X ) )
metss2.2  |-  ( ph  ->  D  e.  ( Met `  X ) )
metss2.3  |-  ( ph  ->  R  e.  RR+ )
metss2.4  |-  ( (
ph  /\  ( x  e.  X  /\  y  e.  X ) )  -> 
( x C y )  <_  ( R  x.  ( x D y ) ) )
Assertion
Ref Expression
metss2lem  |-  ( (
ph  /\  ( x  e.  X  /\  S  e.  RR+ ) )  ->  (
x ( ball `  D
) ( S  /  R ) )  C_  ( x ( ball `  C ) S ) )
Distinct variable groups:    x, y, C   
x, J, y    x, K, y    y, R    y, S    x, D, y    ph, x, y    x, X, y
Allowed substitution hints:    R( x)    S( x)

Proof of Theorem metss2lem
StepHypRef Expression
1 metss2.2 . . . . . . 7  |-  ( ph  ->  D  e.  ( Met `  X ) )
21ad2antrr 488 . . . . . 6  |-  ( ( ( ph  /\  (
x  e.  X  /\  S  e.  RR+ ) )  /\  y  e.  X
)  ->  D  e.  ( Met `  X ) )
3 simplrl 535 . . . . . 6  |-  ( ( ( ph  /\  (
x  e.  X  /\  S  e.  RR+ ) )  /\  y  e.  X
)  ->  x  e.  X )
4 simpr 110 . . . . . 6  |-  ( ( ( ph  /\  (
x  e.  X  /\  S  e.  RR+ ) )  /\  y  e.  X
)  ->  y  e.  X )
5 metcl 13520 . . . . . 6  |-  ( ( D  e.  ( Met `  X )  /\  x  e.  X  /\  y  e.  X )  ->  (
x D y )  e.  RR )
62, 3, 4, 5syl3anc 1238 . . . . 5  |-  ( ( ( ph  /\  (
x  e.  X  /\  S  e.  RR+ ) )  /\  y  e.  X
)  ->  ( x D y )  e.  RR )
7 simplrr 536 . . . . . 6  |-  ( ( ( ph  /\  (
x  e.  X  /\  S  e.  RR+ ) )  /\  y  e.  X
)  ->  S  e.  RR+ )
87rpred 9683 . . . . 5  |-  ( ( ( ph  /\  (
x  e.  X  /\  S  e.  RR+ ) )  /\  y  e.  X
)  ->  S  e.  RR )
9 metss2.3 . . . . . 6  |-  ( ph  ->  R  e.  RR+ )
109ad2antrr 488 . . . . 5  |-  ( ( ( ph  /\  (
x  e.  X  /\  S  e.  RR+ ) )  /\  y  e.  X
)  ->  R  e.  RR+ )
116, 8, 10ltmuldiv2d 9732 . . . 4  |-  ( ( ( ph  /\  (
x  e.  X  /\  S  e.  RR+ ) )  /\  y  e.  X
)  ->  ( ( R  x.  ( x D y ) )  <  S  <->  ( x D y )  < 
( S  /  R
) ) )
12 metss2.4 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  X  /\  y  e.  X ) )  -> 
( x C y )  <_  ( R  x.  ( x D y ) ) )
1312anassrs 400 . . . . . 6  |-  ( ( ( ph  /\  x  e.  X )  /\  y  e.  X )  ->  (
x C y )  <_  ( R  x.  ( x D y ) ) )
1413adantlrr 483 . . . . 5  |-  ( ( ( ph  /\  (
x  e.  X  /\  S  e.  RR+ ) )  /\  y  e.  X
)  ->  ( x C y )  <_ 
( R  x.  (
x D y ) ) )
15 metss2.1 . . . . . . . 8  |-  ( ph  ->  C  e.  ( Met `  X ) )
1615ad2antrr 488 . . . . . . 7  |-  ( ( ( ph  /\  (
x  e.  X  /\  S  e.  RR+ ) )  /\  y  e.  X
)  ->  C  e.  ( Met `  X ) )
17 metcl 13520 . . . . . . 7  |-  ( ( C  e.  ( Met `  X )  /\  x  e.  X  /\  y  e.  X )  ->  (
x C y )  e.  RR )
1816, 3, 4, 17syl3anc 1238 . . . . . 6  |-  ( ( ( ph  /\  (
x  e.  X  /\  S  e.  RR+ ) )  /\  y  e.  X
)  ->  ( x C y )  e.  RR )
1910rpred 9683 . . . . . . 7  |-  ( ( ( ph  /\  (
x  e.  X  /\  S  e.  RR+ ) )  /\  y  e.  X
)  ->  R  e.  RR )
2019, 6remulcld 7978 . . . . . 6  |-  ( ( ( ph  /\  (
x  e.  X  /\  S  e.  RR+ ) )  /\  y  e.  X
)  ->  ( R  x.  ( x D y ) )  e.  RR )
21 lelttr 8036 . . . . . 6  |-  ( ( ( x C y )  e.  RR  /\  ( R  x.  (
x D y ) )  e.  RR  /\  S  e.  RR )  ->  ( ( ( x C y )  <_ 
( R  x.  (
x D y ) )  /\  ( R  x.  ( x D y ) )  < 
S )  ->  (
x C y )  <  S ) )
2218, 20, 8, 21syl3anc 1238 . . . . 5  |-  ( ( ( ph  /\  (
x  e.  X  /\  S  e.  RR+ ) )  /\  y  e.  X
)  ->  ( (
( x C y )  <_  ( R  x.  ( x D y ) )  /\  ( R  x.  ( x D y ) )  <  S )  -> 
( x C y )  <  S ) )
2314, 22mpand 429 . . . 4  |-  ( ( ( ph  /\  (
x  e.  X  /\  S  e.  RR+ ) )  /\  y  e.  X
)  ->  ( ( R  x.  ( x D y ) )  <  S  ->  (
x C y )  <  S ) )
2411, 23sylbird 170 . . 3  |-  ( ( ( ph  /\  (
x  e.  X  /\  S  e.  RR+ ) )  /\  y  e.  X
)  ->  ( (
x D y )  <  ( S  /  R )  ->  (
x C y )  <  S ) )
2524ss2rabdv 3236 . 2  |-  ( (
ph  /\  ( x  e.  X  /\  S  e.  RR+ ) )  ->  { y  e.  X  |  ( x D y )  <  ( S  /  R ) }  C_  { y  e.  X  | 
( x C y )  <  S }
)
26 metxmet 13522 . . . . 5  |-  ( D  e.  ( Met `  X
)  ->  D  e.  ( *Met `  X
) )
271, 26syl 14 . . . 4  |-  ( ph  ->  D  e.  ( *Met `  X ) )
2827adantr 276 . . 3  |-  ( (
ph  /\  ( x  e.  X  /\  S  e.  RR+ ) )  ->  D  e.  ( *Met `  X ) )
29 simprl 529 . . 3  |-  ( (
ph  /\  ( x  e.  X  /\  S  e.  RR+ ) )  ->  x  e.  X )
30 simpr 110 . . . . 5  |-  ( ( x  e.  X  /\  S  e.  RR+ )  ->  S  e.  RR+ )
31 rpdivcl 9666 . . . . 5  |-  ( ( S  e.  RR+  /\  R  e.  RR+ )  ->  ( S  /  R )  e.  RR+ )
3230, 9, 31syl2anr 290 . . . 4  |-  ( (
ph  /\  ( x  e.  X  /\  S  e.  RR+ ) )  ->  ( S  /  R )  e.  RR+ )
3332rpxrd 9684 . . 3  |-  ( (
ph  /\  ( x  e.  X  /\  S  e.  RR+ ) )  ->  ( S  /  R )  e. 
RR* )
34 blval 13556 . . 3  |-  ( ( D  e.  ( *Met `  X )  /\  x  e.  X  /\  ( S  /  R
)  e.  RR* )  ->  ( x ( ball `  D ) ( S  /  R ) )  =  { y  e.  X  |  ( x D y )  < 
( S  /  R
) } )
3528, 29, 33, 34syl3anc 1238 . 2  |-  ( (
ph  /\  ( x  e.  X  /\  S  e.  RR+ ) )  ->  (
x ( ball `  D
) ( S  /  R ) )  =  { y  e.  X  |  ( x D y )  <  ( S  /  R ) } )
36 metxmet 13522 . . . . 5  |-  ( C  e.  ( Met `  X
)  ->  C  e.  ( *Met `  X
) )
3715, 36syl 14 . . . 4  |-  ( ph  ->  C  e.  ( *Met `  X ) )
3837adantr 276 . . 3  |-  ( (
ph  /\  ( x  e.  X  /\  S  e.  RR+ ) )  ->  C  e.  ( *Met `  X ) )
39 rpxr 9648 . . . 4  |-  ( S  e.  RR+  ->  S  e. 
RR* )
4039ad2antll 491 . . 3  |-  ( (
ph  /\  ( x  e.  X  /\  S  e.  RR+ ) )  ->  S  e.  RR* )
41 blval 13556 . . 3  |-  ( ( C  e.  ( *Met `  X )  /\  x  e.  X  /\  S  e.  RR* )  ->  ( x ( ball `  C ) S )  =  { y  e.  X  |  ( x C y )  < 
S } )
4238, 29, 40, 41syl3anc 1238 . 2  |-  ( (
ph  /\  ( x  e.  X  /\  S  e.  RR+ ) )  ->  (
x ( ball `  C
) S )  =  { y  e.  X  |  ( x C y )  <  S } )
4325, 35, 423sstr4d 3200 1  |-  ( (
ph  /\  ( x  e.  X  /\  S  e.  RR+ ) )  ->  (
x ( ball `  D
) ( S  /  R ) )  C_  ( x ( ball `  C ) S ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1353    e. wcel 2148   {crab 2459    C_ wss 3129   class class class wbr 4000   ` cfv 5212  (class class class)co 5869   RRcr 7801    x. cmul 7807   RR*cxr 7981    < clt 7982    <_ cle 7983    / cdiv 8618   RR+crp 9640   *Metcxmet 13147   Metcmet 13148   ballcbl 13149   MetOpencmopn 13152
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4118  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-cnex 7893  ax-resscn 7894  ax-1cn 7895  ax-1re 7896  ax-icn 7897  ax-addcl 7898  ax-addrcl 7899  ax-mulcl 7900  ax-mulrcl 7901  ax-addcom 7902  ax-mulcom 7903  ax-addass 7904  ax-mulass 7905  ax-distr 7906  ax-i2m1 7907  ax-0lt1 7908  ax-1rid 7909  ax-0id 7910  ax-rnegex 7911  ax-precex 7912  ax-cnre 7913  ax-pre-ltirr 7914  ax-pre-ltwlin 7915  ax-pre-lttrn 7916  ax-pre-apti 7917  ax-pre-ltadd 7918  ax-pre-mulgt0 7919  ax-pre-mulext 7920
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-if 3535  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-iun 3886  df-br 4001  df-opab 4062  df-mpt 4063  df-id 4290  df-po 4293  df-iso 4294  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-fv 5220  df-riota 5825  df-ov 5872  df-oprab 5873  df-mpo 5874  df-1st 6135  df-2nd 6136  df-map 6644  df-pnf 7984  df-mnf 7985  df-xr 7986  df-ltxr 7987  df-le 7988  df-sub 8120  df-neg 8121  df-reap 8522  df-ap 8529  df-div 8619  df-rp 9641  df-xadd 9760  df-psmet 13154  df-xmet 13155  df-met 13156  df-bl 13157
This theorem is referenced by:  metss2  13665
  Copyright terms: Public domain W3C validator