ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  metss2lem Unicode version

Theorem metss2lem 15044
Description: Lemma for metss2 15045. (Contributed by Mario Carneiro, 14-Sep-2015.)
Hypotheses
Ref Expression
metequiv.3  |-  J  =  ( MetOpen `  C )
metequiv.4  |-  K  =  ( MetOpen `  D )
metss2.1  |-  ( ph  ->  C  e.  ( Met `  X ) )
metss2.2  |-  ( ph  ->  D  e.  ( Met `  X ) )
metss2.3  |-  ( ph  ->  R  e.  RR+ )
metss2.4  |-  ( (
ph  /\  ( x  e.  X  /\  y  e.  X ) )  -> 
( x C y )  <_  ( R  x.  ( x D y ) ) )
Assertion
Ref Expression
metss2lem  |-  ( (
ph  /\  ( x  e.  X  /\  S  e.  RR+ ) )  ->  (
x ( ball `  D
) ( S  /  R ) )  C_  ( x ( ball `  C ) S ) )
Distinct variable groups:    x, y, C   
x, J, y    x, K, y    y, R    y, S    x, D, y    ph, x, y    x, X, y
Allowed substitution hints:    R( x)    S( x)

Proof of Theorem metss2lem
StepHypRef Expression
1 metss2.2 . . . . . . 7  |-  ( ph  ->  D  e.  ( Met `  X ) )
21ad2antrr 488 . . . . . 6  |-  ( ( ( ph  /\  (
x  e.  X  /\  S  e.  RR+ ) )  /\  y  e.  X
)  ->  D  e.  ( Met `  X ) )
3 simplrl 535 . . . . . 6  |-  ( ( ( ph  /\  (
x  e.  X  /\  S  e.  RR+ ) )  /\  y  e.  X
)  ->  x  e.  X )
4 simpr 110 . . . . . 6  |-  ( ( ( ph  /\  (
x  e.  X  /\  S  e.  RR+ ) )  /\  y  e.  X
)  ->  y  e.  X )
5 metcl 14900 . . . . . 6  |-  ( ( D  e.  ( Met `  X )  /\  x  e.  X  /\  y  e.  X )  ->  (
x D y )  e.  RR )
62, 3, 4, 5syl3anc 1250 . . . . 5  |-  ( ( ( ph  /\  (
x  e.  X  /\  S  e.  RR+ ) )  /\  y  e.  X
)  ->  ( x D y )  e.  RR )
7 simplrr 536 . . . . . 6  |-  ( ( ( ph  /\  (
x  e.  X  /\  S  e.  RR+ ) )  /\  y  e.  X
)  ->  S  e.  RR+ )
87rpred 9838 . . . . 5  |-  ( ( ( ph  /\  (
x  e.  X  /\  S  e.  RR+ ) )  /\  y  e.  X
)  ->  S  e.  RR )
9 metss2.3 . . . . . 6  |-  ( ph  ->  R  e.  RR+ )
109ad2antrr 488 . . . . 5  |-  ( ( ( ph  /\  (
x  e.  X  /\  S  e.  RR+ ) )  /\  y  e.  X
)  ->  R  e.  RR+ )
116, 8, 10ltmuldiv2d 9887 . . . 4  |-  ( ( ( ph  /\  (
x  e.  X  /\  S  e.  RR+ ) )  /\  y  e.  X
)  ->  ( ( R  x.  ( x D y ) )  <  S  <->  ( x D y )  < 
( S  /  R
) ) )
12 metss2.4 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  X  /\  y  e.  X ) )  -> 
( x C y )  <_  ( R  x.  ( x D y ) ) )
1312anassrs 400 . . . . . 6  |-  ( ( ( ph  /\  x  e.  X )  /\  y  e.  X )  ->  (
x C y )  <_  ( R  x.  ( x D y ) ) )
1413adantlrr 483 . . . . 5  |-  ( ( ( ph  /\  (
x  e.  X  /\  S  e.  RR+ ) )  /\  y  e.  X
)  ->  ( x C y )  <_ 
( R  x.  (
x D y ) ) )
15 metss2.1 . . . . . . . 8  |-  ( ph  ->  C  e.  ( Met `  X ) )
1615ad2antrr 488 . . . . . . 7  |-  ( ( ( ph  /\  (
x  e.  X  /\  S  e.  RR+ ) )  /\  y  e.  X
)  ->  C  e.  ( Met `  X ) )
17 metcl 14900 . . . . . . 7  |-  ( ( C  e.  ( Met `  X )  /\  x  e.  X  /\  y  e.  X )  ->  (
x C y )  e.  RR )
1816, 3, 4, 17syl3anc 1250 . . . . . 6  |-  ( ( ( ph  /\  (
x  e.  X  /\  S  e.  RR+ ) )  /\  y  e.  X
)  ->  ( x C y )  e.  RR )
1910rpred 9838 . . . . . . 7  |-  ( ( ( ph  /\  (
x  e.  X  /\  S  e.  RR+ ) )  /\  y  e.  X
)  ->  R  e.  RR )
2019, 6remulcld 8123 . . . . . 6  |-  ( ( ( ph  /\  (
x  e.  X  /\  S  e.  RR+ ) )  /\  y  e.  X
)  ->  ( R  x.  ( x D y ) )  e.  RR )
21 lelttr 8181 . . . . . 6  |-  ( ( ( x C y )  e.  RR  /\  ( R  x.  (
x D y ) )  e.  RR  /\  S  e.  RR )  ->  ( ( ( x C y )  <_ 
( R  x.  (
x D y ) )  /\  ( R  x.  ( x D y ) )  < 
S )  ->  (
x C y )  <  S ) )
2218, 20, 8, 21syl3anc 1250 . . . . 5  |-  ( ( ( ph  /\  (
x  e.  X  /\  S  e.  RR+ ) )  /\  y  e.  X
)  ->  ( (
( x C y )  <_  ( R  x.  ( x D y ) )  /\  ( R  x.  ( x D y ) )  <  S )  -> 
( x C y )  <  S ) )
2314, 22mpand 429 . . . 4  |-  ( ( ( ph  /\  (
x  e.  X  /\  S  e.  RR+ ) )  /\  y  e.  X
)  ->  ( ( R  x.  ( x D y ) )  <  S  ->  (
x C y )  <  S ) )
2411, 23sylbird 170 . . 3  |-  ( ( ( ph  /\  (
x  e.  X  /\  S  e.  RR+ ) )  /\  y  e.  X
)  ->  ( (
x D y )  <  ( S  /  R )  ->  (
x C y )  <  S ) )
2524ss2rabdv 3278 . 2  |-  ( (
ph  /\  ( x  e.  X  /\  S  e.  RR+ ) )  ->  { y  e.  X  |  ( x D y )  <  ( S  /  R ) }  C_  { y  e.  X  | 
( x C y )  <  S }
)
26 metxmet 14902 . . . . 5  |-  ( D  e.  ( Met `  X
)  ->  D  e.  ( *Met `  X
) )
271, 26syl 14 . . . 4  |-  ( ph  ->  D  e.  ( *Met `  X ) )
2827adantr 276 . . 3  |-  ( (
ph  /\  ( x  e.  X  /\  S  e.  RR+ ) )  ->  D  e.  ( *Met `  X ) )
29 simprl 529 . . 3  |-  ( (
ph  /\  ( x  e.  X  /\  S  e.  RR+ ) )  ->  x  e.  X )
30 simpr 110 . . . . 5  |-  ( ( x  e.  X  /\  S  e.  RR+ )  ->  S  e.  RR+ )
31 rpdivcl 9821 . . . . 5  |-  ( ( S  e.  RR+  /\  R  e.  RR+ )  ->  ( S  /  R )  e.  RR+ )
3230, 9, 31syl2anr 290 . . . 4  |-  ( (
ph  /\  ( x  e.  X  /\  S  e.  RR+ ) )  ->  ( S  /  R )  e.  RR+ )
3332rpxrd 9839 . . 3  |-  ( (
ph  /\  ( x  e.  X  /\  S  e.  RR+ ) )  ->  ( S  /  R )  e. 
RR* )
34 blval 14936 . . 3  |-  ( ( D  e.  ( *Met `  X )  /\  x  e.  X  /\  ( S  /  R
)  e.  RR* )  ->  ( x ( ball `  D ) ( S  /  R ) )  =  { y  e.  X  |  ( x D y )  < 
( S  /  R
) } )
3528, 29, 33, 34syl3anc 1250 . 2  |-  ( (
ph  /\  ( x  e.  X  /\  S  e.  RR+ ) )  ->  (
x ( ball `  D
) ( S  /  R ) )  =  { y  e.  X  |  ( x D y )  <  ( S  /  R ) } )
36 metxmet 14902 . . . . 5  |-  ( C  e.  ( Met `  X
)  ->  C  e.  ( *Met `  X
) )
3715, 36syl 14 . . . 4  |-  ( ph  ->  C  e.  ( *Met `  X ) )
3837adantr 276 . . 3  |-  ( (
ph  /\  ( x  e.  X  /\  S  e.  RR+ ) )  ->  C  e.  ( *Met `  X ) )
39 rpxr 9803 . . . 4  |-  ( S  e.  RR+  ->  S  e. 
RR* )
4039ad2antll 491 . . 3  |-  ( (
ph  /\  ( x  e.  X  /\  S  e.  RR+ ) )  ->  S  e.  RR* )
41 blval 14936 . . 3  |-  ( ( C  e.  ( *Met `  X )  /\  x  e.  X  /\  S  e.  RR* )  ->  ( x ( ball `  C ) S )  =  { y  e.  X  |  ( x C y )  < 
S } )
4238, 29, 40, 41syl3anc 1250 . 2  |-  ( (
ph  /\  ( x  e.  X  /\  S  e.  RR+ ) )  ->  (
x ( ball `  C
) S )  =  { y  e.  X  |  ( x C y )  <  S } )
4325, 35, 423sstr4d 3242 1  |-  ( (
ph  /\  ( x  e.  X  /\  S  e.  RR+ ) )  ->  (
x ( ball `  D
) ( S  /  R ) )  C_  ( x ( ball `  C ) S ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2177   {crab 2489    C_ wss 3170   class class class wbr 4051   ` cfv 5280  (class class class)co 5957   RRcr 7944    x. cmul 7950   RR*cxr 8126    < clt 8127    <_ cle 8128    / cdiv 8765   RR+crp 9795   *Metcxmet 14373   Metcmet 14374   ballcbl 14375   MetOpencmopn 14378
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4170  ax-pow 4226  ax-pr 4261  ax-un 4488  ax-setind 4593  ax-cnex 8036  ax-resscn 8037  ax-1cn 8038  ax-1re 8039  ax-icn 8040  ax-addcl 8041  ax-addrcl 8042  ax-mulcl 8043  ax-mulrcl 8044  ax-addcom 8045  ax-mulcom 8046  ax-addass 8047  ax-mulass 8048  ax-distr 8049  ax-i2m1 8050  ax-0lt1 8051  ax-1rid 8052  ax-0id 8053  ax-rnegex 8054  ax-precex 8055  ax-cnre 8056  ax-pre-ltirr 8057  ax-pre-ltwlin 8058  ax-pre-lttrn 8059  ax-pre-apti 8060  ax-pre-ltadd 8061  ax-pre-mulgt0 8062  ax-pre-mulext 8063
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-if 3576  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-iun 3935  df-br 4052  df-opab 4114  df-mpt 4115  df-id 4348  df-po 4351  df-iso 4352  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-res 4695  df-ima 4696  df-iota 5241  df-fun 5282  df-fn 5283  df-f 5284  df-fv 5288  df-riota 5912  df-ov 5960  df-oprab 5961  df-mpo 5962  df-1st 6239  df-2nd 6240  df-map 6750  df-pnf 8129  df-mnf 8130  df-xr 8131  df-ltxr 8132  df-le 8133  df-sub 8265  df-neg 8266  df-reap 8668  df-ap 8675  df-div 8766  df-rp 9796  df-xadd 9915  df-psmet 14380  df-xmet 14381  df-met 14382  df-bl 14383
This theorem is referenced by:  metss2  15045
  Copyright terms: Public domain W3C validator