ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  metss2lem Unicode version

Theorem metss2lem 13252
Description: Lemma for metss2 13253. (Contributed by Mario Carneiro, 14-Sep-2015.)
Hypotheses
Ref Expression
metequiv.3  |-  J  =  ( MetOpen `  C )
metequiv.4  |-  K  =  ( MetOpen `  D )
metss2.1  |-  ( ph  ->  C  e.  ( Met `  X ) )
metss2.2  |-  ( ph  ->  D  e.  ( Met `  X ) )
metss2.3  |-  ( ph  ->  R  e.  RR+ )
metss2.4  |-  ( (
ph  /\  ( x  e.  X  /\  y  e.  X ) )  -> 
( x C y )  <_  ( R  x.  ( x D y ) ) )
Assertion
Ref Expression
metss2lem  |-  ( (
ph  /\  ( x  e.  X  /\  S  e.  RR+ ) )  ->  (
x ( ball `  D
) ( S  /  R ) )  C_  ( x ( ball `  C ) S ) )
Distinct variable groups:    x, y, C   
x, J, y    x, K, y    y, R    y, S    x, D, y    ph, x, y    x, X, y
Allowed substitution hints:    R( x)    S( x)

Proof of Theorem metss2lem
StepHypRef Expression
1 metss2.2 . . . . . . 7  |-  ( ph  ->  D  e.  ( Met `  X ) )
21ad2antrr 485 . . . . . 6  |-  ( ( ( ph  /\  (
x  e.  X  /\  S  e.  RR+ ) )  /\  y  e.  X
)  ->  D  e.  ( Met `  X ) )
3 simplrl 530 . . . . . 6  |-  ( ( ( ph  /\  (
x  e.  X  /\  S  e.  RR+ ) )  /\  y  e.  X
)  ->  x  e.  X )
4 simpr 109 . . . . . 6  |-  ( ( ( ph  /\  (
x  e.  X  /\  S  e.  RR+ ) )  /\  y  e.  X
)  ->  y  e.  X )
5 metcl 13108 . . . . . 6  |-  ( ( D  e.  ( Met `  X )  /\  x  e.  X  /\  y  e.  X )  ->  (
x D y )  e.  RR )
62, 3, 4, 5syl3anc 1233 . . . . 5  |-  ( ( ( ph  /\  (
x  e.  X  /\  S  e.  RR+ ) )  /\  y  e.  X
)  ->  ( x D y )  e.  RR )
7 simplrr 531 . . . . . 6  |-  ( ( ( ph  /\  (
x  e.  X  /\  S  e.  RR+ ) )  /\  y  e.  X
)  ->  S  e.  RR+ )
87rpred 9642 . . . . 5  |-  ( ( ( ph  /\  (
x  e.  X  /\  S  e.  RR+ ) )  /\  y  e.  X
)  ->  S  e.  RR )
9 metss2.3 . . . . . 6  |-  ( ph  ->  R  e.  RR+ )
109ad2antrr 485 . . . . 5  |-  ( ( ( ph  /\  (
x  e.  X  /\  S  e.  RR+ ) )  /\  y  e.  X
)  ->  R  e.  RR+ )
116, 8, 10ltmuldiv2d 9691 . . . 4  |-  ( ( ( ph  /\  (
x  e.  X  /\  S  e.  RR+ ) )  /\  y  e.  X
)  ->  ( ( R  x.  ( x D y ) )  <  S  <->  ( x D y )  < 
( S  /  R
) ) )
12 metss2.4 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  X  /\  y  e.  X ) )  -> 
( x C y )  <_  ( R  x.  ( x D y ) ) )
1312anassrs 398 . . . . . 6  |-  ( ( ( ph  /\  x  e.  X )  /\  y  e.  X )  ->  (
x C y )  <_  ( R  x.  ( x D y ) ) )
1413adantlrr 480 . . . . 5  |-  ( ( ( ph  /\  (
x  e.  X  /\  S  e.  RR+ ) )  /\  y  e.  X
)  ->  ( x C y )  <_ 
( R  x.  (
x D y ) ) )
15 metss2.1 . . . . . . . 8  |-  ( ph  ->  C  e.  ( Met `  X ) )
1615ad2antrr 485 . . . . . . 7  |-  ( ( ( ph  /\  (
x  e.  X  /\  S  e.  RR+ ) )  /\  y  e.  X
)  ->  C  e.  ( Met `  X ) )
17 metcl 13108 . . . . . . 7  |-  ( ( C  e.  ( Met `  X )  /\  x  e.  X  /\  y  e.  X )  ->  (
x C y )  e.  RR )
1816, 3, 4, 17syl3anc 1233 . . . . . 6  |-  ( ( ( ph  /\  (
x  e.  X  /\  S  e.  RR+ ) )  /\  y  e.  X
)  ->  ( x C y )  e.  RR )
1910rpred 9642 . . . . . . 7  |-  ( ( ( ph  /\  (
x  e.  X  /\  S  e.  RR+ ) )  /\  y  e.  X
)  ->  R  e.  RR )
2019, 6remulcld 7939 . . . . . 6  |-  ( ( ( ph  /\  (
x  e.  X  /\  S  e.  RR+ ) )  /\  y  e.  X
)  ->  ( R  x.  ( x D y ) )  e.  RR )
21 lelttr 7997 . . . . . 6  |-  ( ( ( x C y )  e.  RR  /\  ( R  x.  (
x D y ) )  e.  RR  /\  S  e.  RR )  ->  ( ( ( x C y )  <_ 
( R  x.  (
x D y ) )  /\  ( R  x.  ( x D y ) )  < 
S )  ->  (
x C y )  <  S ) )
2218, 20, 8, 21syl3anc 1233 . . . . 5  |-  ( ( ( ph  /\  (
x  e.  X  /\  S  e.  RR+ ) )  /\  y  e.  X
)  ->  ( (
( x C y )  <_  ( R  x.  ( x D y ) )  /\  ( R  x.  ( x D y ) )  <  S )  -> 
( x C y )  <  S ) )
2314, 22mpand 427 . . . 4  |-  ( ( ( ph  /\  (
x  e.  X  /\  S  e.  RR+ ) )  /\  y  e.  X
)  ->  ( ( R  x.  ( x D y ) )  <  S  ->  (
x C y )  <  S ) )
2411, 23sylbird 169 . . 3  |-  ( ( ( ph  /\  (
x  e.  X  /\  S  e.  RR+ ) )  /\  y  e.  X
)  ->  ( (
x D y )  <  ( S  /  R )  ->  (
x C y )  <  S ) )
2524ss2rabdv 3228 . 2  |-  ( (
ph  /\  ( x  e.  X  /\  S  e.  RR+ ) )  ->  { y  e.  X  |  ( x D y )  <  ( S  /  R ) }  C_  { y  e.  X  | 
( x C y )  <  S }
)
26 metxmet 13110 . . . . 5  |-  ( D  e.  ( Met `  X
)  ->  D  e.  ( *Met `  X
) )
271, 26syl 14 . . . 4  |-  ( ph  ->  D  e.  ( *Met `  X ) )
2827adantr 274 . . 3  |-  ( (
ph  /\  ( x  e.  X  /\  S  e.  RR+ ) )  ->  D  e.  ( *Met `  X ) )
29 simprl 526 . . 3  |-  ( (
ph  /\  ( x  e.  X  /\  S  e.  RR+ ) )  ->  x  e.  X )
30 simpr 109 . . . . 5  |-  ( ( x  e.  X  /\  S  e.  RR+ )  ->  S  e.  RR+ )
31 rpdivcl 9625 . . . . 5  |-  ( ( S  e.  RR+  /\  R  e.  RR+ )  ->  ( S  /  R )  e.  RR+ )
3230, 9, 31syl2anr 288 . . . 4  |-  ( (
ph  /\  ( x  e.  X  /\  S  e.  RR+ ) )  ->  ( S  /  R )  e.  RR+ )
3332rpxrd 9643 . . 3  |-  ( (
ph  /\  ( x  e.  X  /\  S  e.  RR+ ) )  ->  ( S  /  R )  e. 
RR* )
34 blval 13144 . . 3  |-  ( ( D  e.  ( *Met `  X )  /\  x  e.  X  /\  ( S  /  R
)  e.  RR* )  ->  ( x ( ball `  D ) ( S  /  R ) )  =  { y  e.  X  |  ( x D y )  < 
( S  /  R
) } )
3528, 29, 33, 34syl3anc 1233 . 2  |-  ( (
ph  /\  ( x  e.  X  /\  S  e.  RR+ ) )  ->  (
x ( ball `  D
) ( S  /  R ) )  =  { y  e.  X  |  ( x D y )  <  ( S  /  R ) } )
36 metxmet 13110 . . . . 5  |-  ( C  e.  ( Met `  X
)  ->  C  e.  ( *Met `  X
) )
3715, 36syl 14 . . . 4  |-  ( ph  ->  C  e.  ( *Met `  X ) )
3837adantr 274 . . 3  |-  ( (
ph  /\  ( x  e.  X  /\  S  e.  RR+ ) )  ->  C  e.  ( *Met `  X ) )
39 rpxr 9607 . . . 4  |-  ( S  e.  RR+  ->  S  e. 
RR* )
4039ad2antll 488 . . 3  |-  ( (
ph  /\  ( x  e.  X  /\  S  e.  RR+ ) )  ->  S  e.  RR* )
41 blval 13144 . . 3  |-  ( ( C  e.  ( *Met `  X )  /\  x  e.  X  /\  S  e.  RR* )  ->  ( x ( ball `  C ) S )  =  { y  e.  X  |  ( x C y )  < 
S } )
4238, 29, 40, 41syl3anc 1233 . 2  |-  ( (
ph  /\  ( x  e.  X  /\  S  e.  RR+ ) )  ->  (
x ( ball `  C
) S )  =  { y  e.  X  |  ( x C y )  <  S } )
4325, 35, 423sstr4d 3192 1  |-  ( (
ph  /\  ( x  e.  X  /\  S  e.  RR+ ) )  ->  (
x ( ball `  D
) ( S  /  R ) )  C_  ( x ( ball `  C ) S ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1348    e. wcel 2141   {crab 2452    C_ wss 3121   class class class wbr 3987   ` cfv 5196  (class class class)co 5851   RRcr 7762    x. cmul 7768   RR*cxr 7942    < clt 7943    <_ cle 7944    / cdiv 8578   RR+crp 9599   *Metcxmet 12735   Metcmet 12736   ballcbl 12737   MetOpencmopn 12740
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4105  ax-pow 4158  ax-pr 4192  ax-un 4416  ax-setind 4519  ax-cnex 7854  ax-resscn 7855  ax-1cn 7856  ax-1re 7857  ax-icn 7858  ax-addcl 7859  ax-addrcl 7860  ax-mulcl 7861  ax-mulrcl 7862  ax-addcom 7863  ax-mulcom 7864  ax-addass 7865  ax-mulass 7866  ax-distr 7867  ax-i2m1 7868  ax-0lt1 7869  ax-1rid 7870  ax-0id 7871  ax-rnegex 7872  ax-precex 7873  ax-cnre 7874  ax-pre-ltirr 7875  ax-pre-ltwlin 7876  ax-pre-lttrn 7877  ax-pre-apti 7878  ax-pre-ltadd 7879  ax-pre-mulgt0 7880  ax-pre-mulext 7881
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-if 3526  df-pw 3566  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3795  df-iun 3873  df-br 3988  df-opab 4049  df-mpt 4050  df-id 4276  df-po 4279  df-iso 4280  df-xp 4615  df-rel 4616  df-cnv 4617  df-co 4618  df-dm 4619  df-rn 4620  df-res 4621  df-ima 4622  df-iota 5158  df-fun 5198  df-fn 5199  df-f 5200  df-fv 5204  df-riota 5807  df-ov 5854  df-oprab 5855  df-mpo 5856  df-1st 6117  df-2nd 6118  df-map 6625  df-pnf 7945  df-mnf 7946  df-xr 7947  df-ltxr 7948  df-le 7949  df-sub 8081  df-neg 8082  df-reap 8483  df-ap 8490  df-div 8579  df-rp 9600  df-xadd 9719  df-psmet 12742  df-xmet 12743  df-met 12744  df-bl 12745
This theorem is referenced by:  metss2  13253
  Copyright terms: Public domain W3C validator