ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  metss2lem Unicode version

Theorem metss2lem 14474
Description: Lemma for metss2 14475. (Contributed by Mario Carneiro, 14-Sep-2015.)
Hypotheses
Ref Expression
metequiv.3  |-  J  =  ( MetOpen `  C )
metequiv.4  |-  K  =  ( MetOpen `  D )
metss2.1  |-  ( ph  ->  C  e.  ( Met `  X ) )
metss2.2  |-  ( ph  ->  D  e.  ( Met `  X ) )
metss2.3  |-  ( ph  ->  R  e.  RR+ )
metss2.4  |-  ( (
ph  /\  ( x  e.  X  /\  y  e.  X ) )  -> 
( x C y )  <_  ( R  x.  ( x D y ) ) )
Assertion
Ref Expression
metss2lem  |-  ( (
ph  /\  ( x  e.  X  /\  S  e.  RR+ ) )  ->  (
x ( ball `  D
) ( S  /  R ) )  C_  ( x ( ball `  C ) S ) )
Distinct variable groups:    x, y, C   
x, J, y    x, K, y    y, R    y, S    x, D, y    ph, x, y    x, X, y
Allowed substitution hints:    R( x)    S( x)

Proof of Theorem metss2lem
StepHypRef Expression
1 metss2.2 . . . . . . 7  |-  ( ph  ->  D  e.  ( Met `  X ) )
21ad2antrr 488 . . . . . 6  |-  ( ( ( ph  /\  (
x  e.  X  /\  S  e.  RR+ ) )  /\  y  e.  X
)  ->  D  e.  ( Met `  X ) )
3 simplrl 535 . . . . . 6  |-  ( ( ( ph  /\  (
x  e.  X  /\  S  e.  RR+ ) )  /\  y  e.  X
)  ->  x  e.  X )
4 simpr 110 . . . . . 6  |-  ( ( ( ph  /\  (
x  e.  X  /\  S  e.  RR+ ) )  /\  y  e.  X
)  ->  y  e.  X )
5 metcl 14330 . . . . . 6  |-  ( ( D  e.  ( Met `  X )  /\  x  e.  X  /\  y  e.  X )  ->  (
x D y )  e.  RR )
62, 3, 4, 5syl3anc 1249 . . . . 5  |-  ( ( ( ph  /\  (
x  e.  X  /\  S  e.  RR+ ) )  /\  y  e.  X
)  ->  ( x D y )  e.  RR )
7 simplrr 536 . . . . . 6  |-  ( ( ( ph  /\  (
x  e.  X  /\  S  e.  RR+ ) )  /\  y  e.  X
)  ->  S  e.  RR+ )
87rpred 9728 . . . . 5  |-  ( ( ( ph  /\  (
x  e.  X  /\  S  e.  RR+ ) )  /\  y  e.  X
)  ->  S  e.  RR )
9 metss2.3 . . . . . 6  |-  ( ph  ->  R  e.  RR+ )
109ad2antrr 488 . . . . 5  |-  ( ( ( ph  /\  (
x  e.  X  /\  S  e.  RR+ ) )  /\  y  e.  X
)  ->  R  e.  RR+ )
116, 8, 10ltmuldiv2d 9777 . . . 4  |-  ( ( ( ph  /\  (
x  e.  X  /\  S  e.  RR+ ) )  /\  y  e.  X
)  ->  ( ( R  x.  ( x D y ) )  <  S  <->  ( x D y )  < 
( S  /  R
) ) )
12 metss2.4 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  X  /\  y  e.  X ) )  -> 
( x C y )  <_  ( R  x.  ( x D y ) ) )
1312anassrs 400 . . . . . 6  |-  ( ( ( ph  /\  x  e.  X )  /\  y  e.  X )  ->  (
x C y )  <_  ( R  x.  ( x D y ) ) )
1413adantlrr 483 . . . . 5  |-  ( ( ( ph  /\  (
x  e.  X  /\  S  e.  RR+ ) )  /\  y  e.  X
)  ->  ( x C y )  <_ 
( R  x.  (
x D y ) ) )
15 metss2.1 . . . . . . . 8  |-  ( ph  ->  C  e.  ( Met `  X ) )
1615ad2antrr 488 . . . . . . 7  |-  ( ( ( ph  /\  (
x  e.  X  /\  S  e.  RR+ ) )  /\  y  e.  X
)  ->  C  e.  ( Met `  X ) )
17 metcl 14330 . . . . . . 7  |-  ( ( C  e.  ( Met `  X )  /\  x  e.  X  /\  y  e.  X )  ->  (
x C y )  e.  RR )
1816, 3, 4, 17syl3anc 1249 . . . . . 6  |-  ( ( ( ph  /\  (
x  e.  X  /\  S  e.  RR+ ) )  /\  y  e.  X
)  ->  ( x C y )  e.  RR )
1910rpred 9728 . . . . . . 7  |-  ( ( ( ph  /\  (
x  e.  X  /\  S  e.  RR+ ) )  /\  y  e.  X
)  ->  R  e.  RR )
2019, 6remulcld 8019 . . . . . 6  |-  ( ( ( ph  /\  (
x  e.  X  /\  S  e.  RR+ ) )  /\  y  e.  X
)  ->  ( R  x.  ( x D y ) )  e.  RR )
21 lelttr 8077 . . . . . 6  |-  ( ( ( x C y )  e.  RR  /\  ( R  x.  (
x D y ) )  e.  RR  /\  S  e.  RR )  ->  ( ( ( x C y )  <_ 
( R  x.  (
x D y ) )  /\  ( R  x.  ( x D y ) )  < 
S )  ->  (
x C y )  <  S ) )
2218, 20, 8, 21syl3anc 1249 . . . . 5  |-  ( ( ( ph  /\  (
x  e.  X  /\  S  e.  RR+ ) )  /\  y  e.  X
)  ->  ( (
( x C y )  <_  ( R  x.  ( x D y ) )  /\  ( R  x.  ( x D y ) )  <  S )  -> 
( x C y )  <  S ) )
2314, 22mpand 429 . . . 4  |-  ( ( ( ph  /\  (
x  e.  X  /\  S  e.  RR+ ) )  /\  y  e.  X
)  ->  ( ( R  x.  ( x D y ) )  <  S  ->  (
x C y )  <  S ) )
2411, 23sylbird 170 . . 3  |-  ( ( ( ph  /\  (
x  e.  X  /\  S  e.  RR+ ) )  /\  y  e.  X
)  ->  ( (
x D y )  <  ( S  /  R )  ->  (
x C y )  <  S ) )
2524ss2rabdv 3251 . 2  |-  ( (
ph  /\  ( x  e.  X  /\  S  e.  RR+ ) )  ->  { y  e.  X  |  ( x D y )  <  ( S  /  R ) }  C_  { y  e.  X  | 
( x C y )  <  S }
)
26 metxmet 14332 . . . . 5  |-  ( D  e.  ( Met `  X
)  ->  D  e.  ( *Met `  X
) )
271, 26syl 14 . . . 4  |-  ( ph  ->  D  e.  ( *Met `  X ) )
2827adantr 276 . . 3  |-  ( (
ph  /\  ( x  e.  X  /\  S  e.  RR+ ) )  ->  D  e.  ( *Met `  X ) )
29 simprl 529 . . 3  |-  ( (
ph  /\  ( x  e.  X  /\  S  e.  RR+ ) )  ->  x  e.  X )
30 simpr 110 . . . . 5  |-  ( ( x  e.  X  /\  S  e.  RR+ )  ->  S  e.  RR+ )
31 rpdivcl 9711 . . . . 5  |-  ( ( S  e.  RR+  /\  R  e.  RR+ )  ->  ( S  /  R )  e.  RR+ )
3230, 9, 31syl2anr 290 . . . 4  |-  ( (
ph  /\  ( x  e.  X  /\  S  e.  RR+ ) )  ->  ( S  /  R )  e.  RR+ )
3332rpxrd 9729 . . 3  |-  ( (
ph  /\  ( x  e.  X  /\  S  e.  RR+ ) )  ->  ( S  /  R )  e. 
RR* )
34 blval 14366 . . 3  |-  ( ( D  e.  ( *Met `  X )  /\  x  e.  X  /\  ( S  /  R
)  e.  RR* )  ->  ( x ( ball `  D ) ( S  /  R ) )  =  { y  e.  X  |  ( x D y )  < 
( S  /  R
) } )
3528, 29, 33, 34syl3anc 1249 . 2  |-  ( (
ph  /\  ( x  e.  X  /\  S  e.  RR+ ) )  ->  (
x ( ball `  D
) ( S  /  R ) )  =  { y  e.  X  |  ( x D y )  <  ( S  /  R ) } )
36 metxmet 14332 . . . . 5  |-  ( C  e.  ( Met `  X
)  ->  C  e.  ( *Met `  X
) )
3715, 36syl 14 . . . 4  |-  ( ph  ->  C  e.  ( *Met `  X ) )
3837adantr 276 . . 3  |-  ( (
ph  /\  ( x  e.  X  /\  S  e.  RR+ ) )  ->  C  e.  ( *Met `  X ) )
39 rpxr 9693 . . . 4  |-  ( S  e.  RR+  ->  S  e. 
RR* )
4039ad2antll 491 . . 3  |-  ( (
ph  /\  ( x  e.  X  /\  S  e.  RR+ ) )  ->  S  e.  RR* )
41 blval 14366 . . 3  |-  ( ( C  e.  ( *Met `  X )  /\  x  e.  X  /\  S  e.  RR* )  ->  ( x ( ball `  C ) S )  =  { y  e.  X  |  ( x C y )  < 
S } )
4238, 29, 40, 41syl3anc 1249 . 2  |-  ( (
ph  /\  ( x  e.  X  /\  S  e.  RR+ ) )  ->  (
x ( ball `  C
) S )  =  { y  e.  X  |  ( x C y )  <  S } )
4325, 35, 423sstr4d 3215 1  |-  ( (
ph  /\  ( x  e.  X  /\  S  e.  RR+ ) )  ->  (
x ( ball `  D
) ( S  /  R ) )  C_  ( x ( ball `  C ) S ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2160   {crab 2472    C_ wss 3144   class class class wbr 4018   ` cfv 5235  (class class class)co 5897   RRcr 7841    x. cmul 7847   RR*cxr 8022    < clt 8023    <_ cle 8024    / cdiv 8660   RR+crp 9685   *Metcxmet 13866   Metcmet 13867   ballcbl 13868   MetOpencmopn 13871
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-cnex 7933  ax-resscn 7934  ax-1cn 7935  ax-1re 7936  ax-icn 7937  ax-addcl 7938  ax-addrcl 7939  ax-mulcl 7940  ax-mulrcl 7941  ax-addcom 7942  ax-mulcom 7943  ax-addass 7944  ax-mulass 7945  ax-distr 7946  ax-i2m1 7947  ax-0lt1 7948  ax-1rid 7949  ax-0id 7950  ax-rnegex 7951  ax-precex 7952  ax-cnre 7953  ax-pre-ltirr 7954  ax-pre-ltwlin 7955  ax-pre-lttrn 7956  ax-pre-apti 7957  ax-pre-ltadd 7958  ax-pre-mulgt0 7959  ax-pre-mulext 7960
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rmo 2476  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-if 3550  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-id 4311  df-po 4314  df-iso 4315  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-fv 5243  df-riota 5852  df-ov 5900  df-oprab 5901  df-mpo 5902  df-1st 6166  df-2nd 6167  df-map 6677  df-pnf 8025  df-mnf 8026  df-xr 8027  df-ltxr 8028  df-le 8029  df-sub 8161  df-neg 8162  df-reap 8563  df-ap 8570  df-div 8661  df-rp 9686  df-xadd 9805  df-psmet 13873  df-xmet 13874  df-met 13875  df-bl 13876
This theorem is referenced by:  metss2  14475
  Copyright terms: Public domain W3C validator