| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rexrd | Unicode version | ||
| Description: A standard real is an extended real. (Contributed by Mario Carneiro, 28-May-2016.) |
| Ref | Expression |
|---|---|
| rexrd.1 |
|
| Ref | Expression |
|---|---|
| rexrd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ressxr 8116 |
. 2
| |
| 2 | rexrd.1 |
. 2
| |
| 3 | 1, 2 | sselid 3191 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-v 2774 df-un 3170 df-in 3172 df-ss 3179 df-xr 8111 |
| This theorem is referenced by: xnn0xr 9363 rpxr 9783 rpxrd 9819 xnn0dcle 9924 xnegcl 9954 xaddf 9966 xaddval 9967 xnn0lenn0nn0 9987 xposdif 10004 iooshf 10074 icoshftf1o 10113 ioo0 10402 ioom 10403 ico0 10404 ioc0 10405 xqltnle 10410 modqelico 10479 mulqaddmodid 10509 addmodid 10517 elicc4abs 11405 xrmaxiflemcl 11556 fprodge1 11950 pcxcl 12634 pcdvdsb 12643 pcaddlem 12662 pcadd 12663 xblss2ps 14876 xblss2 14877 blss2ps 14878 blss2 14879 blhalf 14880 cnblcld 15007 ioo2blex 15024 tgioo 15026 cnopnap 15083 suplociccreex 15096 suplociccex 15097 dedekindicc 15105 ivthinclemlm 15106 ivthinclemum 15107 ivthinclemlopn 15108 ivthinclemuopn 15110 ivthdec 15116 ivthreinc 15117 sin0pilem2 15254 pilem3 15255 |
| Copyright terms: Public domain | W3C validator |