| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rexrd | Unicode version | ||
| Description: A standard real is an extended real. (Contributed by Mario Carneiro, 28-May-2016.) |
| Ref | Expression |
|---|---|
| rexrd.1 |
|
| Ref | Expression |
|---|---|
| rexrd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ressxr 8087 |
. 2
| |
| 2 | rexrd.1 |
. 2
| |
| 3 | 1, 2 | sselid 3182 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-xr 8082 |
| This theorem is referenced by: xnn0xr 9334 rpxr 9753 rpxrd 9789 xnn0dcle 9894 xnegcl 9924 xaddf 9936 xaddval 9937 xnn0lenn0nn0 9957 xposdif 9974 iooshf 10044 icoshftf1o 10083 ioo0 10366 ioom 10367 ico0 10368 ioc0 10369 xqltnle 10374 modqelico 10443 mulqaddmodid 10473 addmodid 10481 elicc4abs 11276 xrmaxiflemcl 11427 fprodge1 11821 pcxcl 12505 pcdvdsb 12514 pcaddlem 12533 pcadd 12534 xblss2ps 14724 xblss2 14725 blss2ps 14726 blss2 14727 blhalf 14728 cnblcld 14855 ioo2blex 14872 tgioo 14874 cnopnap 14931 suplociccreex 14944 suplociccex 14945 dedekindicc 14953 ivthinclemlm 14954 ivthinclemum 14955 ivthinclemlopn 14956 ivthinclemuopn 14958 ivthdec 14964 ivthreinc 14965 sin0pilem2 15102 pilem3 15103 |
| Copyright terms: Public domain | W3C validator |