| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rexrd | Unicode version | ||
| Description: A standard real is an extended real. (Contributed by Mario Carneiro, 28-May-2016.) |
| Ref | Expression |
|---|---|
| rexrd.1 |
|
| Ref | Expression |
|---|---|
| rexrd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ressxr 8190 |
. 2
| |
| 2 | rexrd.1 |
. 2
| |
| 3 | 1, 2 | sselid 3222 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-xr 8185 |
| This theorem is referenced by: xnn0xr 9437 rpxr 9857 rpxrd 9893 xnn0dcle 9998 xnegcl 10028 xaddf 10040 xaddval 10041 xnn0lenn0nn0 10061 xposdif 10078 iooshf 10148 icoshftf1o 10187 ioo0 10479 ioom 10480 ico0 10481 ioc0 10482 xqltnle 10487 modqelico 10556 mulqaddmodid 10586 addmodid 10594 elicc4abs 11605 xrmaxiflemcl 11756 fprodge1 12150 pcxcl 12834 pcdvdsb 12843 pcaddlem 12862 pcadd 12863 xblss2ps 15078 xblss2 15079 blss2ps 15080 blss2 15081 blhalf 15082 cnblcld 15209 ioo2blex 15226 tgioo 15228 cnopnap 15285 suplociccreex 15298 suplociccex 15299 dedekindicc 15307 ivthinclemlm 15308 ivthinclemum 15309 ivthinclemlopn 15310 ivthinclemuopn 15312 ivthdec 15318 ivthreinc 15319 sin0pilem2 15456 pilem3 15457 |
| Copyright terms: Public domain | W3C validator |