Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > rexrd | Unicode version |
Description: A standard real is an extended real. (Contributed by Mario Carneiro, 28-May-2016.) |
Ref | Expression |
---|---|
rexrd.1 |
Ref | Expression |
---|---|
rexrd |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ressxr 7938 | . 2 | |
2 | rexrd.1 | . 2 | |
3 | 1, 2 | sselid 3139 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wcel 2136 cr 7748 cxr 7928 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2296 df-v 2727 df-un 3119 df-in 3121 df-ss 3128 df-xr 7933 |
This theorem is referenced by: xnn0xr 9178 rpxr 9593 rpxrd 9629 xnn0dcle 9734 xnegcl 9764 xaddf 9776 xaddval 9777 xnn0lenn0nn0 9797 xposdif 9814 iooshf 9884 icoshftf1o 9923 ioo0 10191 ioom 10192 ico0 10193 ioc0 10194 modqelico 10265 mulqaddmodid 10295 addmodid 10303 elicc4abs 11032 xrmaxiflemcl 11182 fprodge1 11576 pcxcl 12239 pcdvdsb 12247 pcaddlem 12266 pcadd 12267 xblss2ps 13004 xblss2 13005 blss2ps 13006 blss2 13007 blhalf 13008 cnblcld 13135 ioo2blex 13144 tgioo 13146 cnopnap 13194 suplociccreex 13202 suplociccex 13203 dedekindicc 13211 ivthinclemlm 13212 ivthinclemum 13213 ivthinclemlopn 13214 ivthinclemuopn 13216 ivthdec 13222 sin0pilem2 13303 pilem3 13304 |
Copyright terms: Public domain | W3C validator |