![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > rexrd | Unicode version |
Description: A standard real is an extended real. (Contributed by Mario Carneiro, 28-May-2016.) |
Ref | Expression |
---|---|
rexrd.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
rexrd |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ressxr 8014 |
. 2
![]() ![]() ![]() ![]() | |
2 | rexrd.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | sselid 3165 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-ext 2169 |
This theorem depends on definitions: df-bi 117 df-tru 1366 df-nf 1471 df-sb 1773 df-clab 2174 df-cleq 2180 df-clel 2183 df-nfc 2318 df-v 2751 df-un 3145 df-in 3147 df-ss 3154 df-xr 8009 |
This theorem is referenced by: xnn0xr 9257 rpxr 9674 rpxrd 9710 xnn0dcle 9815 xnegcl 9845 xaddf 9857 xaddval 9858 xnn0lenn0nn0 9878 xposdif 9895 iooshf 9965 icoshftf1o 10004 ioo0 10273 ioom 10274 ico0 10275 ioc0 10276 modqelico 10347 mulqaddmodid 10377 addmodid 10385 elicc4abs 11116 xrmaxiflemcl 11266 fprodge1 11660 pcxcl 12324 pcdvdsb 12332 pcaddlem 12351 pcadd 12352 xblss2ps 14175 xblss2 14176 blss2ps 14177 blss2 14178 blhalf 14179 cnblcld 14306 ioo2blex 14315 tgioo 14317 cnopnap 14365 suplociccreex 14373 suplociccex 14374 dedekindicc 14382 ivthinclemlm 14383 ivthinclemum 14384 ivthinclemlopn 14385 ivthinclemuopn 14387 ivthdec 14393 sin0pilem2 14474 pilem3 14475 |
Copyright terms: Public domain | W3C validator |