| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > rexrd | Unicode version | ||
| Description: A standard real is an extended real. (Contributed by Mario Carneiro, 28-May-2016.) | 
| Ref | Expression | 
|---|---|
| rexrd.1 | 
 | 
| Ref | Expression | 
|---|---|
| rexrd | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ressxr 8070 | 
. 2
 | |
| 2 | rexrd.1 | 
. 2
 | |
| 3 | 1, 2 | sselid 3181 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-xr 8065 | 
| This theorem is referenced by: xnn0xr 9317 rpxr 9736 rpxrd 9772 xnn0dcle 9877 xnegcl 9907 xaddf 9919 xaddval 9920 xnn0lenn0nn0 9940 xposdif 9957 iooshf 10027 icoshftf1o 10066 ioo0 10349 ioom 10350 ico0 10351 ioc0 10352 xqltnle 10357 modqelico 10426 mulqaddmodid 10456 addmodid 10464 elicc4abs 11259 xrmaxiflemcl 11410 fprodge1 11804 pcxcl 12480 pcdvdsb 12489 pcaddlem 12508 pcadd 12509 xblss2ps 14640 xblss2 14641 blss2ps 14642 blss2 14643 blhalf 14644 cnblcld 14771 ioo2blex 14788 tgioo 14790 cnopnap 14847 suplociccreex 14860 suplociccex 14861 dedekindicc 14869 ivthinclemlm 14870 ivthinclemum 14871 ivthinclemlopn 14872 ivthinclemuopn 14874 ivthdec 14880 ivthreinc 14881 sin0pilem2 15018 pilem3 15019 | 
| Copyright terms: Public domain | W3C validator |