| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rexrd | Unicode version | ||
| Description: A standard real is an extended real. (Contributed by Mario Carneiro, 28-May-2016.) |
| Ref | Expression |
|---|---|
| rexrd.1 |
|
| Ref | Expression |
|---|---|
| rexrd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ressxr 8151 |
. 2
| |
| 2 | rexrd.1 |
. 2
| |
| 3 | 1, 2 | sselid 3199 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-v 2778 df-un 3178 df-in 3180 df-ss 3187 df-xr 8146 |
| This theorem is referenced by: xnn0xr 9398 rpxr 9818 rpxrd 9854 xnn0dcle 9959 xnegcl 9989 xaddf 10001 xaddval 10002 xnn0lenn0nn0 10022 xposdif 10039 iooshf 10109 icoshftf1o 10148 ioo0 10439 ioom 10440 ico0 10441 ioc0 10442 xqltnle 10447 modqelico 10516 mulqaddmodid 10546 addmodid 10554 elicc4abs 11520 xrmaxiflemcl 11671 fprodge1 12065 pcxcl 12749 pcdvdsb 12758 pcaddlem 12777 pcadd 12778 xblss2ps 14991 xblss2 14992 blss2ps 14993 blss2 14994 blhalf 14995 cnblcld 15122 ioo2blex 15139 tgioo 15141 cnopnap 15198 suplociccreex 15211 suplociccex 15212 dedekindicc 15220 ivthinclemlm 15221 ivthinclemum 15222 ivthinclemlopn 15223 ivthinclemuopn 15225 ivthdec 15231 ivthreinc 15232 sin0pilem2 15369 pilem3 15370 |
| Copyright terms: Public domain | W3C validator |