| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rexrd | Unicode version | ||
| Description: A standard real is an extended real. (Contributed by Mario Carneiro, 28-May-2016.) |
| Ref | Expression |
|---|---|
| rexrd.1 |
|
| Ref | Expression |
|---|---|
| rexrd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ressxr 8118 |
. 2
| |
| 2 | rexrd.1 |
. 2
| |
| 3 | 1, 2 | sselid 3191 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-v 2774 df-un 3170 df-in 3172 df-ss 3179 df-xr 8113 |
| This theorem is referenced by: xnn0xr 9365 rpxr 9785 rpxrd 9821 xnn0dcle 9926 xnegcl 9956 xaddf 9968 xaddval 9969 xnn0lenn0nn0 9989 xposdif 10006 iooshf 10076 icoshftf1o 10115 ioo0 10404 ioom 10405 ico0 10406 ioc0 10407 xqltnle 10412 modqelico 10481 mulqaddmodid 10511 addmodid 10519 elicc4abs 11438 xrmaxiflemcl 11589 fprodge1 11983 pcxcl 12667 pcdvdsb 12676 pcaddlem 12695 pcadd 12696 xblss2ps 14909 xblss2 14910 blss2ps 14911 blss2 14912 blhalf 14913 cnblcld 15040 ioo2blex 15057 tgioo 15059 cnopnap 15116 suplociccreex 15129 suplociccex 15130 dedekindicc 15138 ivthinclemlm 15139 ivthinclemum 15140 ivthinclemlopn 15141 ivthinclemuopn 15143 ivthdec 15149 ivthreinc 15150 sin0pilem2 15287 pilem3 15288 |
| Copyright terms: Public domain | W3C validator |