| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rpcnd | Unicode version | ||
| Description: A positive real is a complex number. (Contributed by Mario Carneiro, 28-May-2016.) |
| Ref | Expression |
|---|---|
| rpred.1 |
|
| Ref | Expression |
|---|---|
| rpcnd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpred.1 |
. . 3
| |
| 2 | 1 | rpred 9888 |
. 2
|
| 3 | 2 | recnd 8171 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 ax-resscn 8087 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-rab 2517 df-in 3203 df-ss 3210 df-rp 9846 |
| This theorem is referenced by: rpcnne0d 9898 ltaddrp2d 9923 iccf1o 10196 bcp1nk 10979 bcpasc 10983 cvg1nlemcxze 11488 cvg1nlemres 11491 resqrexlemdec 11517 resqrexlemlo 11519 resqrexlemcalc2 11521 resqrexlemcalc3 11522 resqrexlemnm 11524 resqrexlemcvg 11525 resqrexlemoverl 11527 sqrtdiv 11548 absdivap 11576 bdtrilem 11745 isumrpcl 12000 expcnvap0 12008 absgtap 12016 cvgratz 12038 mertenslemi1 12041 effsumlt 12198 bitsmod 12462 pythagtriplem12 12793 pythagtriplem14 12795 pythagtriplem16 12797 limcimolemlt 15332 rpdivcxp 15579 rpcxple2 15586 rpcxplt2 15587 rpcxpsqrt 15590 rpabscxpbnd 15608 logbgcd1irr 15635 iooref1o 16361 trilpolemclim 16363 trilpolemisumle 16365 trilpolemeq1 16367 trilpolemlt1 16368 |
| Copyright terms: Public domain | W3C validator |