| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rpcnd | Unicode version | ||
| Description: A positive real is a complex number. (Contributed by Mario Carneiro, 28-May-2016.) |
| Ref | Expression |
|---|---|
| rpred.1 |
|
| Ref | Expression |
|---|---|
| rpcnd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpred.1 |
. . 3
| |
| 2 | 1 | rpred 9774 |
. 2
|
| 3 | 2 | recnd 8058 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-resscn 7974 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rab 2484 df-in 3163 df-ss 3170 df-rp 9732 |
| This theorem is referenced by: rpcnne0d 9784 ltaddrp2d 9809 iccf1o 10082 bcp1nk 10857 bcpasc 10861 cvg1nlemcxze 11150 cvg1nlemres 11153 resqrexlemdec 11179 resqrexlemlo 11181 resqrexlemcalc2 11183 resqrexlemcalc3 11184 resqrexlemnm 11186 resqrexlemcvg 11187 resqrexlemoverl 11189 sqrtdiv 11210 absdivap 11238 bdtrilem 11407 isumrpcl 11662 expcnvap0 11670 absgtap 11678 cvgratz 11700 mertenslemi1 11703 effsumlt 11860 bitsmod 12124 pythagtriplem12 12455 pythagtriplem14 12457 pythagtriplem16 12459 limcimolemlt 14926 rpdivcxp 15173 rpcxple2 15180 rpcxplt2 15181 rpcxpsqrt 15184 rpabscxpbnd 15202 logbgcd1irr 15229 iooref1o 15705 trilpolemclim 15707 trilpolemisumle 15709 trilpolemeq1 15711 trilpolemlt1 15712 |
| Copyright terms: Public domain | W3C validator |