![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > rpcnd | Unicode version |
Description: A positive real is a complex number. (Contributed by Mario Carneiro, 28-May-2016.) |
Ref | Expression |
---|---|
rpred.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
rpcnd |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rpred.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | rpred 9762 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | 2 | recnd 8048 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 ax-resscn 7964 |
This theorem depends on definitions: df-bi 117 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-rab 2481 df-in 3159 df-ss 3166 df-rp 9720 |
This theorem is referenced by: rpcnne0d 9772 ltaddrp2d 9797 iccf1o 10070 bcp1nk 10833 bcpasc 10837 cvg1nlemcxze 11126 cvg1nlemres 11129 resqrexlemdec 11155 resqrexlemlo 11157 resqrexlemcalc2 11159 resqrexlemcalc3 11160 resqrexlemnm 11162 resqrexlemcvg 11163 resqrexlemoverl 11165 sqrtdiv 11186 absdivap 11214 bdtrilem 11382 isumrpcl 11637 expcnvap0 11645 absgtap 11653 cvgratz 11675 mertenslemi1 11678 effsumlt 11835 pythagtriplem12 12413 pythagtriplem14 12415 pythagtriplem16 12417 limcimolemlt 14818 rpdivcxp 15046 rpcxple2 15052 rpcxplt2 15053 rpcxpsqrt 15056 rpabscxpbnd 15073 logbgcd1irr 15099 iooref1o 15524 trilpolemclim 15526 trilpolemisumle 15528 trilpolemeq1 15530 trilpolemlt1 15531 |
Copyright terms: Public domain | W3C validator |