ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rpcnd Unicode version

Theorem rpcnd 9850
Description: A positive real is a complex number. (Contributed by Mario Carneiro, 28-May-2016.)
Hypothesis
Ref Expression
rpred.1  |-  ( ph  ->  A  e.  RR+ )
Assertion
Ref Expression
rpcnd  |-  ( ph  ->  A  e.  CC )

Proof of Theorem rpcnd
StepHypRef Expression
1 rpred.1 . . 3  |-  ( ph  ->  A  e.  RR+ )
21rpred 9848 . 2  |-  ( ph  ->  A  e.  RR )
32recnd 8131 1  |-  ( ph  ->  A  e.  CC )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2177   CCcc 7953   RR+crp 9805
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188  ax-resscn 8047
This theorem depends on definitions:  df-bi 117  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-rab 2494  df-in 3176  df-ss 3183  df-rp 9806
This theorem is referenced by:  rpcnne0d  9858  ltaddrp2d  9883  iccf1o  10156  bcp1nk  10939  bcpasc  10943  cvg1nlemcxze  11378  cvg1nlemres  11381  resqrexlemdec  11407  resqrexlemlo  11409  resqrexlemcalc2  11411  resqrexlemcalc3  11412  resqrexlemnm  11414  resqrexlemcvg  11415  resqrexlemoverl  11417  sqrtdiv  11438  absdivap  11466  bdtrilem  11635  isumrpcl  11890  expcnvap0  11898  absgtap  11906  cvgratz  11928  mertenslemi1  11931  effsumlt  12088  bitsmod  12352  pythagtriplem12  12683  pythagtriplem14  12685  pythagtriplem16  12687  limcimolemlt  15221  rpdivcxp  15468  rpcxple2  15475  rpcxplt2  15476  rpcxpsqrt  15479  rpabscxpbnd  15497  logbgcd1irr  15524  iooref1o  16145  trilpolemclim  16147  trilpolemisumle  16149  trilpolemeq1  16151  trilpolemlt1  16152
  Copyright terms: Public domain W3C validator