ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rpcnd Unicode version

Theorem rpcnd 9802
Description: A positive real is a complex number. (Contributed by Mario Carneiro, 28-May-2016.)
Hypothesis
Ref Expression
rpred.1  |-  ( ph  ->  A  e.  RR+ )
Assertion
Ref Expression
rpcnd  |-  ( ph  ->  A  e.  CC )

Proof of Theorem rpcnd
StepHypRef Expression
1 rpred.1 . . 3  |-  ( ph  ->  A  e.  RR+ )
21rpred 9800 . 2  |-  ( ph  ->  A  e.  RR )
32recnd 8083 1  |-  ( ph  ->  A  e.  CC )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2175   CCcc 7905   RR+crp 9757
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186  ax-resscn 7999
This theorem depends on definitions:  df-bi 117  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-rab 2492  df-in 3171  df-ss 3178  df-rp 9758
This theorem is referenced by:  rpcnne0d  9810  ltaddrp2d  9835  iccf1o  10108  bcp1nk  10888  bcpasc  10892  cvg1nlemcxze  11212  cvg1nlemres  11215  resqrexlemdec  11241  resqrexlemlo  11243  resqrexlemcalc2  11245  resqrexlemcalc3  11246  resqrexlemnm  11248  resqrexlemcvg  11249  resqrexlemoverl  11251  sqrtdiv  11272  absdivap  11300  bdtrilem  11469  isumrpcl  11724  expcnvap0  11732  absgtap  11740  cvgratz  11762  mertenslemi1  11765  effsumlt  11922  bitsmod  12186  pythagtriplem12  12517  pythagtriplem14  12519  pythagtriplem16  12521  limcimolemlt  15054  rpdivcxp  15301  rpcxple2  15308  rpcxplt2  15309  rpcxpsqrt  15312  rpabscxpbnd  15330  logbgcd1irr  15357  iooref1o  15837  trilpolemclim  15839  trilpolemisumle  15841  trilpolemeq1  15843  trilpolemlt1  15844
  Copyright terms: Public domain W3C validator