ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rpcnd Unicode version

Theorem rpcnd 9890
Description: A positive real is a complex number. (Contributed by Mario Carneiro, 28-May-2016.)
Hypothesis
Ref Expression
rpred.1  |-  ( ph  ->  A  e.  RR+ )
Assertion
Ref Expression
rpcnd  |-  ( ph  ->  A  e.  CC )

Proof of Theorem rpcnd
StepHypRef Expression
1 rpred.1 . . 3  |-  ( ph  ->  A  e.  RR+ )
21rpred 9888 . 2  |-  ( ph  ->  A  e.  RR )
32recnd 8171 1  |-  ( ph  ->  A  e.  CC )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2200   CCcc 7993   RR+crp 9845
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211  ax-resscn 8087
This theorem depends on definitions:  df-bi 117  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-rab 2517  df-in 3203  df-ss 3210  df-rp 9846
This theorem is referenced by:  rpcnne0d  9898  ltaddrp2d  9923  iccf1o  10196  bcp1nk  10979  bcpasc  10983  cvg1nlemcxze  11488  cvg1nlemres  11491  resqrexlemdec  11517  resqrexlemlo  11519  resqrexlemcalc2  11521  resqrexlemcalc3  11522  resqrexlemnm  11524  resqrexlemcvg  11525  resqrexlemoverl  11527  sqrtdiv  11548  absdivap  11576  bdtrilem  11745  isumrpcl  12000  expcnvap0  12008  absgtap  12016  cvgratz  12038  mertenslemi1  12041  effsumlt  12198  bitsmod  12462  pythagtriplem12  12793  pythagtriplem14  12795  pythagtriplem16  12797  limcimolemlt  15332  rpdivcxp  15579  rpcxple2  15586  rpcxplt2  15587  rpcxpsqrt  15590  rpabscxpbnd  15608  logbgcd1irr  15635  iooref1o  16361  trilpolemclim  16363  trilpolemisumle  16365  trilpolemeq1  16367  trilpolemlt1  16368
  Copyright terms: Public domain W3C validator