| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rpcnd | Unicode version | ||
| Description: A positive real is a complex number. (Contributed by Mario Carneiro, 28-May-2016.) |
| Ref | Expression |
|---|---|
| rpred.1 |
|
| Ref | Expression |
|---|---|
| rpcnd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpred.1 |
. . 3
| |
| 2 | 1 | rpred 9817 |
. 2
|
| 3 | 2 | recnd 8100 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 ax-resscn 8016 |
| This theorem depends on definitions: df-bi 117 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-rab 2492 df-in 3171 df-ss 3178 df-rp 9775 |
| This theorem is referenced by: rpcnne0d 9827 ltaddrp2d 9852 iccf1o 10125 bcp1nk 10905 bcpasc 10909 cvg1nlemcxze 11235 cvg1nlemres 11238 resqrexlemdec 11264 resqrexlemlo 11266 resqrexlemcalc2 11268 resqrexlemcalc3 11269 resqrexlemnm 11271 resqrexlemcvg 11272 resqrexlemoverl 11274 sqrtdiv 11295 absdivap 11323 bdtrilem 11492 isumrpcl 11747 expcnvap0 11755 absgtap 11763 cvgratz 11785 mertenslemi1 11788 effsumlt 11945 bitsmod 12209 pythagtriplem12 12540 pythagtriplem14 12542 pythagtriplem16 12544 limcimolemlt 15078 rpdivcxp 15325 rpcxple2 15332 rpcxplt2 15333 rpcxpsqrt 15336 rpabscxpbnd 15354 logbgcd1irr 15381 iooref1o 15906 trilpolemclim 15908 trilpolemisumle 15910 trilpolemeq1 15912 trilpolemlt1 15913 |
| Copyright terms: Public domain | W3C validator |