| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rpcnd | Unicode version | ||
| Description: A positive real is a complex number. (Contributed by Mario Carneiro, 28-May-2016.) |
| Ref | Expression |
|---|---|
| rpred.1 |
|
| Ref | Expression |
|---|---|
| rpcnd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpred.1 |
. . 3
| |
| 2 | 1 | rpred 9788 |
. 2
|
| 3 | 2 | recnd 8072 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-resscn 7988 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rab 2484 df-in 3163 df-ss 3170 df-rp 9746 |
| This theorem is referenced by: rpcnne0d 9798 ltaddrp2d 9823 iccf1o 10096 bcp1nk 10871 bcpasc 10875 cvg1nlemcxze 11164 cvg1nlemres 11167 resqrexlemdec 11193 resqrexlemlo 11195 resqrexlemcalc2 11197 resqrexlemcalc3 11198 resqrexlemnm 11200 resqrexlemcvg 11201 resqrexlemoverl 11203 sqrtdiv 11224 absdivap 11252 bdtrilem 11421 isumrpcl 11676 expcnvap0 11684 absgtap 11692 cvgratz 11714 mertenslemi1 11717 effsumlt 11874 bitsmod 12138 pythagtriplem12 12469 pythagtriplem14 12471 pythagtriplem16 12473 limcimolemlt 14984 rpdivcxp 15231 rpcxple2 15238 rpcxplt2 15239 rpcxpsqrt 15242 rpabscxpbnd 15260 logbgcd1irr 15287 iooref1o 15765 trilpolemclim 15767 trilpolemisumle 15769 trilpolemeq1 15771 trilpolemlt1 15772 |
| Copyright terms: Public domain | W3C validator |