ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rpcnd Unicode version

Theorem rpcnd 9764
Description: A positive real is a complex number. (Contributed by Mario Carneiro, 28-May-2016.)
Hypothesis
Ref Expression
rpred.1  |-  ( ph  ->  A  e.  RR+ )
Assertion
Ref Expression
rpcnd  |-  ( ph  ->  A  e.  CC )

Proof of Theorem rpcnd
StepHypRef Expression
1 rpred.1 . . 3  |-  ( ph  ->  A  e.  RR+ )
21rpred 9762 . 2  |-  ( ph  ->  A  e.  RR )
32recnd 8048 1  |-  ( ph  ->  A  e.  CC )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2164   CCcc 7870   RR+crp 9719
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175  ax-resscn 7964
This theorem depends on definitions:  df-bi 117  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-rab 2481  df-in 3159  df-ss 3166  df-rp 9720
This theorem is referenced by:  rpcnne0d  9772  ltaddrp2d  9797  iccf1o  10070  bcp1nk  10833  bcpasc  10837  cvg1nlemcxze  11126  cvg1nlemres  11129  resqrexlemdec  11155  resqrexlemlo  11157  resqrexlemcalc2  11159  resqrexlemcalc3  11160  resqrexlemnm  11162  resqrexlemcvg  11163  resqrexlemoverl  11165  sqrtdiv  11186  absdivap  11214  bdtrilem  11382  isumrpcl  11637  expcnvap0  11645  absgtap  11653  cvgratz  11675  mertenslemi1  11678  effsumlt  11835  pythagtriplem12  12413  pythagtriplem14  12415  pythagtriplem16  12417  limcimolemlt  14818  rpdivcxp  15046  rpcxple2  15052  rpcxplt2  15053  rpcxpsqrt  15056  rpabscxpbnd  15073  logbgcd1irr  15099  iooref1o  15524  trilpolemclim  15526  trilpolemisumle  15528  trilpolemeq1  15530  trilpolemlt1  15531
  Copyright terms: Public domain W3C validator