| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rpcnd | Unicode version | ||
| Description: A positive real is a complex number. (Contributed by Mario Carneiro, 28-May-2016.) |
| Ref | Expression |
|---|---|
| rpred.1 |
|
| Ref | Expression |
|---|---|
| rpcnd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpred.1 |
. . 3
| |
| 2 | 1 | rpred 9800 |
. 2
|
| 3 | 2 | recnd 8083 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 ax-resscn 7999 |
| This theorem depends on definitions: df-bi 117 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-rab 2492 df-in 3171 df-ss 3178 df-rp 9758 |
| This theorem is referenced by: rpcnne0d 9810 ltaddrp2d 9835 iccf1o 10108 bcp1nk 10888 bcpasc 10892 cvg1nlemcxze 11212 cvg1nlemres 11215 resqrexlemdec 11241 resqrexlemlo 11243 resqrexlemcalc2 11245 resqrexlemcalc3 11246 resqrexlemnm 11248 resqrexlemcvg 11249 resqrexlemoverl 11251 sqrtdiv 11272 absdivap 11300 bdtrilem 11469 isumrpcl 11724 expcnvap0 11732 absgtap 11740 cvgratz 11762 mertenslemi1 11765 effsumlt 11922 bitsmod 12186 pythagtriplem12 12517 pythagtriplem14 12519 pythagtriplem16 12521 limcimolemlt 15054 rpdivcxp 15301 rpcxple2 15308 rpcxplt2 15309 rpcxpsqrt 15312 rpabscxpbnd 15330 logbgcd1irr 15357 iooref1o 15837 trilpolemclim 15839 trilpolemisumle 15841 trilpolemeq1 15843 trilpolemlt1 15844 |
| Copyright terms: Public domain | W3C validator |