ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rpcnd Unicode version

Theorem rpcnd 9776
Description: A positive real is a complex number. (Contributed by Mario Carneiro, 28-May-2016.)
Hypothesis
Ref Expression
rpred.1  |-  ( ph  ->  A  e.  RR+ )
Assertion
Ref Expression
rpcnd  |-  ( ph  ->  A  e.  CC )

Proof of Theorem rpcnd
StepHypRef Expression
1 rpred.1 . . 3  |-  ( ph  ->  A  e.  RR+ )
21rpred 9774 . 2  |-  ( ph  ->  A  e.  RR )
32recnd 8058 1  |-  ( ph  ->  A  e.  CC )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2167   CCcc 7880   RR+crp 9731
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178  ax-resscn 7974
This theorem depends on definitions:  df-bi 117  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-rab 2484  df-in 3163  df-ss 3170  df-rp 9732
This theorem is referenced by:  rpcnne0d  9784  ltaddrp2d  9809  iccf1o  10082  bcp1nk  10857  bcpasc  10861  cvg1nlemcxze  11150  cvg1nlemres  11153  resqrexlemdec  11179  resqrexlemlo  11181  resqrexlemcalc2  11183  resqrexlemcalc3  11184  resqrexlemnm  11186  resqrexlemcvg  11187  resqrexlemoverl  11189  sqrtdiv  11210  absdivap  11238  bdtrilem  11407  isumrpcl  11662  expcnvap0  11670  absgtap  11678  cvgratz  11700  mertenslemi1  11703  effsumlt  11860  bitsmod  12124  pythagtriplem12  12455  pythagtriplem14  12457  pythagtriplem16  12459  limcimolemlt  14926  rpdivcxp  15173  rpcxple2  15180  rpcxplt2  15181  rpcxpsqrt  15184  rpabscxpbnd  15202  logbgcd1irr  15229  iooref1o  15705  trilpolemclim  15707  trilpolemisumle  15709  trilpolemeq1  15711  trilpolemlt1  15712
  Copyright terms: Public domain W3C validator