Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > rpcnd | Unicode version |
Description: A positive real is a complex number. (Contributed by Mario Carneiro, 28-May-2016.) |
Ref | Expression |
---|---|
rpred.1 |
Ref | Expression |
---|---|
rpcnd |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rpred.1 | . . 3 | |
2 | 1 | rpred 9628 | . 2 |
3 | 2 | recnd 7923 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wcel 2136 cc 7747 crp 9585 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 ax-resscn 7841 |
This theorem depends on definitions: df-bi 116 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2296 df-rab 2452 df-in 3121 df-ss 3128 df-rp 9586 |
This theorem is referenced by: rpcnne0d 9638 ltaddrp2d 9663 iccf1o 9936 bcp1nk 10671 bcpasc 10675 cvg1nlemcxze 10920 cvg1nlemres 10923 resqrexlemdec 10949 resqrexlemlo 10951 resqrexlemcalc2 10953 resqrexlemcalc3 10954 resqrexlemnm 10956 resqrexlemcvg 10957 resqrexlemoverl 10959 sqrtdiv 10980 absdivap 11008 bdtrilem 11176 isumrpcl 11431 expcnvap0 11439 absgtap 11447 cvgratz 11469 mertenslemi1 11472 effsumlt 11629 pythagtriplem12 12203 pythagtriplem14 12205 pythagtriplem16 12207 limcimolemlt 13233 rpdivcxp 13432 rpcxple2 13438 rpcxplt2 13439 rpcxpsqrt 13442 rpabscxpbnd 13459 logbgcd1irr 13485 iooref1o 13873 trilpolemclim 13875 trilpolemisumle 13877 trilpolemeq1 13879 trilpolemlt1 13880 |
Copyright terms: Public domain | W3C validator |