| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rpcnd | Unicode version | ||
| Description: A positive real is a complex number. (Contributed by Mario Carneiro, 28-May-2016.) |
| Ref | Expression |
|---|---|
| rpred.1 |
|
| Ref | Expression |
|---|---|
| rpcnd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpred.1 |
. . 3
| |
| 2 | 1 | rpred 9848 |
. 2
|
| 3 | 2 | recnd 8131 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 ax-resscn 8047 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-rab 2494 df-in 3176 df-ss 3183 df-rp 9806 |
| This theorem is referenced by: rpcnne0d 9858 ltaddrp2d 9883 iccf1o 10156 bcp1nk 10939 bcpasc 10943 cvg1nlemcxze 11378 cvg1nlemres 11381 resqrexlemdec 11407 resqrexlemlo 11409 resqrexlemcalc2 11411 resqrexlemcalc3 11412 resqrexlemnm 11414 resqrexlemcvg 11415 resqrexlemoverl 11417 sqrtdiv 11438 absdivap 11466 bdtrilem 11635 isumrpcl 11890 expcnvap0 11898 absgtap 11906 cvgratz 11928 mertenslemi1 11931 effsumlt 12088 bitsmod 12352 pythagtriplem12 12683 pythagtriplem14 12685 pythagtriplem16 12687 limcimolemlt 15221 rpdivcxp 15468 rpcxple2 15475 rpcxplt2 15476 rpcxpsqrt 15479 rpabscxpbnd 15497 logbgcd1irr 15524 iooref1o 16145 trilpolemclim 16147 trilpolemisumle 16149 trilpolemeq1 16151 trilpolemlt1 16152 |
| Copyright terms: Public domain | W3C validator |