ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rpcnd Unicode version

Theorem rpcnd 9773
Description: A positive real is a complex number. (Contributed by Mario Carneiro, 28-May-2016.)
Hypothesis
Ref Expression
rpred.1  |-  ( ph  ->  A  e.  RR+ )
Assertion
Ref Expression
rpcnd  |-  ( ph  ->  A  e.  CC )

Proof of Theorem rpcnd
StepHypRef Expression
1 rpred.1 . . 3  |-  ( ph  ->  A  e.  RR+ )
21rpred 9771 . 2  |-  ( ph  ->  A  e.  RR )
32recnd 8055 1  |-  ( ph  ->  A  e.  CC )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2167   CCcc 7877   RR+crp 9728
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178  ax-resscn 7971
This theorem depends on definitions:  df-bi 117  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-rab 2484  df-in 3163  df-ss 3170  df-rp 9729
This theorem is referenced by:  rpcnne0d  9781  ltaddrp2d  9806  iccf1o  10079  bcp1nk  10854  bcpasc  10858  cvg1nlemcxze  11147  cvg1nlemres  11150  resqrexlemdec  11176  resqrexlemlo  11178  resqrexlemcalc2  11180  resqrexlemcalc3  11181  resqrexlemnm  11183  resqrexlemcvg  11184  resqrexlemoverl  11186  sqrtdiv  11207  absdivap  11235  bdtrilem  11404  isumrpcl  11659  expcnvap0  11667  absgtap  11675  cvgratz  11697  mertenslemi1  11700  effsumlt  11857  pythagtriplem12  12444  pythagtriplem14  12446  pythagtriplem16  12448  limcimolemlt  14900  rpdivcxp  15147  rpcxple2  15154  rpcxplt2  15155  rpcxpsqrt  15158  rpabscxpbnd  15176  logbgcd1irr  15203  iooref1o  15678  trilpolemclim  15680  trilpolemisumle  15682  trilpolemeq1  15684  trilpolemlt1  15685
  Copyright terms: Public domain W3C validator