ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssblex Unicode version

Theorem ssblex 14383
Description: A nested ball exists whose radius is less than any desired amount. (Contributed by NM, 20-Sep-2007.) (Revised by Mario Carneiro, 12-Nov-2013.)
Assertion
Ref Expression
ssblex  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X )  /\  ( R  e.  RR+  /\  S  e.  RR+ ) )  ->  E. x  e.  RR+  (
x  <  R  /\  ( P ( ball `  D
) x )  C_  ( P ( ball `  D
) S ) ) )
Distinct variable groups:    x, D    x, R    x, P    x, S    x, X

Proof of Theorem ssblex
StepHypRef Expression
1 simprl 529 . . . 4  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X )  /\  ( R  e.  RR+  /\  S  e.  RR+ ) )  ->  R  e.  RR+ )
21rphalfcld 9738 . . 3  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X )  /\  ( R  e.  RR+  /\  S  e.  RR+ ) )  -> 
( R  /  2
)  e.  RR+ )
3 simprr 531 . . 3  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X )  /\  ( R  e.  RR+  /\  S  e.  RR+ ) )  ->  S  e.  RR+ )
4 rpmincl 11277 . . 3  |-  ( ( ( R  /  2
)  e.  RR+  /\  S  e.  RR+ )  -> inf ( { ( R  /  2
) ,  S } ,  RR ,  <  )  e.  RR+ )
52, 3, 4syl2anc 411 . 2  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X )  /\  ( R  e.  RR+  /\  S  e.  RR+ ) )  -> inf ( { ( R  / 
2 ) ,  S } ,  RR ,  <  )  e.  RR+ )
65rpred 9725 . . 3  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X )  /\  ( R  e.  RR+  /\  S  e.  RR+ ) )  -> inf ( { ( R  / 
2 ) ,  S } ,  RR ,  <  )  e.  RR )
72rpred 9725 . . 3  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X )  /\  ( R  e.  RR+  /\  S  e.  RR+ ) )  -> 
( R  /  2
)  e.  RR )
81rpred 9725 . . 3  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X )  /\  ( R  e.  RR+  /\  S  e.  RR+ ) )  ->  R  e.  RR )
93rpred 9725 . . . 4  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X )  /\  ( R  e.  RR+  /\  S  e.  RR+ ) )  ->  S  e.  RR )
10 min1inf 11271 . . . 4  |-  ( ( ( R  /  2
)  e.  RR  /\  S  e.  RR )  -> inf ( { ( R  /  2 ) ,  S } ,  RR ,  <  )  <_  ( R  /  2 ) )
117, 9, 10syl2anc 411 . . 3  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X )  /\  ( R  e.  RR+  /\  S  e.  RR+ ) )  -> inf ( { ( R  / 
2 ) ,  S } ,  RR ,  <  )  <_  ( R  /  2 ) )
121rpgt0d 9728 . . . 4  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X )  /\  ( R  e.  RR+  /\  S  e.  RR+ ) )  -> 
0  <  R )
13 halfpos 9179 . . . . 5  |-  ( R  e.  RR  ->  (
0  <  R  <->  ( R  /  2 )  < 
R ) )
148, 13syl 14 . . . 4  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X )  /\  ( R  e.  RR+  /\  S  e.  RR+ ) )  -> 
( 0  <  R  <->  ( R  /  2 )  <  R ) )
1512, 14mpbid 147 . . 3  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X )  /\  ( R  e.  RR+  /\  S  e.  RR+ ) )  -> 
( R  /  2
)  <  R )
166, 7, 8, 11, 15lelttrd 8111 . 2  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X )  /\  ( R  e.  RR+  /\  S  e.  RR+ ) )  -> inf ( { ( R  / 
2 ) ,  S } ,  RR ,  <  )  <  R )
17 simpl 109 . . 3  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X )  /\  ( R  e.  RR+  /\  S  e.  RR+ ) )  -> 
( D  e.  ( *Met `  X
)  /\  P  e.  X ) )
185rpxrd 9726 . . 3  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X )  /\  ( R  e.  RR+  /\  S  e.  RR+ ) )  -> inf ( { ( R  / 
2 ) ,  S } ,  RR ,  <  )  e.  RR* )
193rpxrd 9726 . . 3  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X )  /\  ( R  e.  RR+  /\  S  e.  RR+ ) )  ->  S  e.  RR* )
20 min2inf 11272 . . . 4  |-  ( ( ( R  /  2
)  e.  RR  /\  S  e.  RR )  -> inf ( { ( R  /  2 ) ,  S } ,  RR ,  <  )  <_  S
)
217, 9, 20syl2anc 411 . . 3  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X )  /\  ( R  e.  RR+  /\  S  e.  RR+ ) )  -> inf ( { ( R  / 
2 ) ,  S } ,  RR ,  <  )  <_  S )
22 ssbl 14378 . . 3  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X )  /\  (inf ( { ( R  / 
2 ) ,  S } ,  RR ,  <  )  e.  RR*  /\  S  e.  RR* )  /\ inf ( { ( R  / 
2 ) ,  S } ,  RR ,  <  )  <_  S )  ->  ( P ( ball `  D )inf ( { ( R  /  2
) ,  S } ,  RR ,  <  )
)  C_  ( P
( ball `  D ) S ) )
2317, 18, 19, 21, 22syl121anc 1254 . 2  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X )  /\  ( R  e.  RR+  /\  S  e.  RR+ ) )  -> 
( P ( ball `  D )inf ( { ( R  /  2
) ,  S } ,  RR ,  <  )
)  C_  ( P
( ball `  D ) S ) )
24 breq1 4021 . . . 4  |-  ( x  = inf ( { ( R  /  2 ) ,  S } ,  RR ,  <  )  -> 
( x  <  R  <-> inf ( { ( R  / 
2 ) ,  S } ,  RR ,  <  )  <  R ) )
25 oveq2 5903 . . . . 5  |-  ( x  = inf ( { ( R  /  2 ) ,  S } ,  RR ,  <  )  -> 
( P ( ball `  D ) x )  =  ( P (
ball `  D )inf ( { ( R  / 
2 ) ,  S } ,  RR ,  <  ) ) )
2625sseq1d 3199 . . . 4  |-  ( x  = inf ( { ( R  /  2 ) ,  S } ,  RR ,  <  )  -> 
( ( P (
ball `  D )
x )  C_  ( P ( ball `  D
) S )  <->  ( P
( ball `  D )inf ( { ( R  / 
2 ) ,  S } ,  RR ,  <  ) )  C_  ( P ( ball `  D
) S ) ) )
2724, 26anbi12d 473 . . 3  |-  ( x  = inf ( { ( R  /  2 ) ,  S } ,  RR ,  <  )  -> 
( ( x  < 
R  /\  ( P
( ball `  D )
x )  C_  ( P ( ball `  D
) S ) )  <-> 
(inf ( { ( R  /  2 ) ,  S } ,  RR ,  <  )  < 
R  /\  ( P
( ball `  D )inf ( { ( R  / 
2 ) ,  S } ,  RR ,  <  ) )  C_  ( P ( ball `  D
) S ) ) ) )
2827rspcev 2856 . 2  |-  ( (inf ( { ( R  /  2 ) ,  S } ,  RR ,  <  )  e.  RR+  /\  (inf ( { ( R  /  2 ) ,  S } ,  RR ,  <  )  < 
R  /\  ( P
( ball `  D )inf ( { ( R  / 
2 ) ,  S } ,  RR ,  <  ) )  C_  ( P ( ball `  D
) S ) ) )  ->  E. x  e.  RR+  ( x  < 
R  /\  ( P
( ball `  D )
x )  C_  ( P ( ball `  D
) S ) ) )
295, 16, 23, 28syl12anc 1247 1  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X )  /\  ( R  e.  RR+  /\  S  e.  RR+ ) )  ->  E. x  e.  RR+  (
x  <  R  /\  ( P ( ball `  D
) x )  C_  ( P ( ball `  D
) S ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2160   E.wrex 2469    C_ wss 3144   {cpr 3608   class class class wbr 4018   ` cfv 5235  (class class class)co 5895  infcinf 7011   RRcr 7839   0cc0 7840   RR*cxr 8020    < clt 8021    <_ cle 8022    / cdiv 8658   2c2 8999   RR+crp 9682   *Metcxmet 13846   ballcbl 13848
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-nul 4144  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-iinf 4605  ax-cnex 7931  ax-resscn 7932  ax-1cn 7933  ax-1re 7934  ax-icn 7935  ax-addcl 7936  ax-addrcl 7937  ax-mulcl 7938  ax-mulrcl 7939  ax-addcom 7940  ax-mulcom 7941  ax-addass 7942  ax-mulass 7943  ax-distr 7944  ax-i2m1 7945  ax-0lt1 7946  ax-1rid 7947  ax-0id 7948  ax-rnegex 7949  ax-precex 7950  ax-cnre 7951  ax-pre-ltirr 7952  ax-pre-ltwlin 7953  ax-pre-lttrn 7954  ax-pre-apti 7955  ax-pre-ltadd 7956  ax-pre-mulgt0 7957  ax-pre-mulext 7958  ax-arch 7959  ax-caucvg 7960
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rmo 2476  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-if 3550  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-tr 4117  df-id 4311  df-po 4314  df-iso 4315  df-iord 4384  df-on 4386  df-ilim 4387  df-suc 4389  df-iom 4608  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-f1 5240  df-fo 5241  df-f1o 5242  df-fv 5243  df-isom 5244  df-riota 5851  df-ov 5898  df-oprab 5899  df-mpo 5900  df-1st 6164  df-2nd 6165  df-recs 6329  df-frec 6415  df-map 6675  df-sup 7012  df-inf 7013  df-pnf 8023  df-mnf 8024  df-xr 8025  df-ltxr 8026  df-le 8027  df-sub 8159  df-neg 8160  df-reap 8561  df-ap 8568  df-div 8659  df-inn 8949  df-2 9007  df-3 9008  df-4 9009  df-n0 9206  df-z 9283  df-uz 9558  df-rp 9683  df-xneg 9801  df-xadd 9802  df-seqfrec 10476  df-exp 10550  df-cj 10882  df-re 10883  df-im 10884  df-rsqrt 11038  df-abs 11039  df-psmet 13853  df-xmet 13854  df-bl 13856
This theorem is referenced by:  mopni3  14436
  Copyright terms: Public domain W3C validator