ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  metcnpi3 Unicode version

Theorem metcnpi3 15104
Description: Epsilon-delta property of a metric space function continuous at  P. A variation of metcnpi2 15103 with non-strict ordering. (Contributed by NM, 16-Dec-2007.) (Revised by Mario Carneiro, 13-Nov-2013.)
Hypotheses
Ref Expression
metcn.2  |-  J  =  ( MetOpen `  C )
metcn.4  |-  K  =  ( MetOpen `  D )
Assertion
Ref Expression
metcnpi3  |-  ( ( ( C  e.  ( *Met `  X
)  /\  D  e.  ( *Met `  Y
) )  /\  ( F  e.  ( ( J  CnP  K ) `  P )  /\  A  e.  RR+ ) )  ->  E. x  e.  RR+  A. y  e.  X  ( (
y C P )  <_  x  ->  (
( F `  y
) D ( F `
 P ) )  <_  A ) )
Distinct variable groups:    x, y, F   
x, J, y    x, K, y    x, X, y   
x, Y, y    x, A, y    x, C, y   
x, D, y    x, P, y

Proof of Theorem metcnpi3
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 metcn.2 . . 3  |-  J  =  ( MetOpen `  C )
2 metcn.4 . . 3  |-  K  =  ( MetOpen `  D )
31, 2metcnpi2 15103 . 2  |-  ( ( ( C  e.  ( *Met `  X
)  /\  D  e.  ( *Met `  Y
) )  /\  ( F  e.  ( ( J  CnP  K ) `  P )  /\  A  e.  RR+ ) )  ->  E. z  e.  RR+  A. y  e.  X  ( (
y C P )  <  z  ->  (
( F `  y
) D ( F `
 P ) )  <  A ) )
4 rphalfcl 9838 . . . 4  |-  ( z  e.  RR+  ->  ( z  /  2 )  e.  RR+ )
54ad2antrl 490 . . 3  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y ) )  /\  ( F  e.  (
( J  CnP  K
) `  P )  /\  A  e.  RR+ )
)  /\  ( z  e.  RR+  /\  A. y  e.  X  ( (
y C P )  <  z  ->  (
( F `  y
) D ( F `
 P ) )  <  A ) ) )  ->  ( z  /  2 )  e.  RR+ )
6 simplll 533 . . . . . . . . 9  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y ) )  /\  ( F  e.  (
( J  CnP  K
) `  P )  /\  A  e.  RR+ )
)  /\  ( z  e.  RR+  /\  y  e.  X ) )  ->  C  e.  ( *Met `  X ) )
7 simprr 531 . . . . . . . . 9  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y ) )  /\  ( F  e.  (
( J  CnP  K
) `  P )  /\  A  e.  RR+ )
)  /\  ( z  e.  RR+  /\  y  e.  X ) )  -> 
y  e.  X )
81mopntopon 15030 . . . . . . . . . . 11  |-  ( C  e.  ( *Met `  X )  ->  J  e.  (TopOn `  X )
)
96, 8syl 14 . . . . . . . . . 10  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y ) )  /\  ( F  e.  (
( J  CnP  K
) `  P )  /\  A  e.  RR+ )
)  /\  ( z  e.  RR+  /\  y  e.  X ) )  ->  J  e.  (TopOn `  X
) )
10 simpllr 534 . . . . . . . . . . . 12  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y ) )  /\  ( F  e.  (
( J  CnP  K
) `  P )  /\  A  e.  RR+ )
)  /\  ( z  e.  RR+  /\  y  e.  X ) )  ->  D  e.  ( *Met `  Y ) )
112mopntopon 15030 . . . . . . . . . . . 12  |-  ( D  e.  ( *Met `  Y )  ->  K  e.  (TopOn `  Y )
)
1210, 11syl 14 . . . . . . . . . . 11  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y ) )  /\  ( F  e.  (
( J  CnP  K
) `  P )  /\  A  e.  RR+ )
)  /\  ( z  e.  RR+  /\  y  e.  X ) )  ->  K  e.  (TopOn `  Y
) )
13 topontop 14601 . . . . . . . . . . 11  |-  ( K  e.  (TopOn `  Y
)  ->  K  e.  Top )
1412, 13syl 14 . . . . . . . . . 10  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y ) )  /\  ( F  e.  (
( J  CnP  K
) `  P )  /\  A  e.  RR+ )
)  /\  ( z  e.  RR+  /\  y  e.  X ) )  ->  K  e.  Top )
15 simplrl 535 . . . . . . . . . 10  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y ) )  /\  ( F  e.  (
( J  CnP  K
) `  P )  /\  A  e.  RR+ )
)  /\  ( z  e.  RR+  /\  y  e.  X ) )  ->  F  e.  ( ( J  CnP  K ) `  P ) )
16 cnprcl2k 14793 . . . . . . . . . 10  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  Top  /\  F  e.  ( ( J  CnP  K ) `  P ) )  ->  P  e.  X )
179, 14, 15, 16syl3anc 1250 . . . . . . . . 9  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y ) )  /\  ( F  e.  (
( J  CnP  K
) `  P )  /\  A  e.  RR+ )
)  /\  ( z  e.  RR+  /\  y  e.  X ) )  ->  P  e.  X )
18 xmetcl 14939 . . . . . . . . 9  |-  ( ( C  e.  ( *Met `  X )  /\  y  e.  X  /\  P  e.  X
)  ->  ( y C P )  e.  RR* )
196, 7, 17, 18syl3anc 1250 . . . . . . . 8  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y ) )  /\  ( F  e.  (
( J  CnP  K
) `  P )  /\  A  e.  RR+ )
)  /\  ( z  e.  RR+  /\  y  e.  X ) )  -> 
( y C P )  e.  RR* )
204ad2antrl 490 . . . . . . . . 9  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y ) )  /\  ( F  e.  (
( J  CnP  K
) `  P )  /\  A  e.  RR+ )
)  /\  ( z  e.  RR+  /\  y  e.  X ) )  -> 
( z  /  2
)  e.  RR+ )
2120rpxrd 9854 . . . . . . . 8  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y ) )  /\  ( F  e.  (
( J  CnP  K
) `  P )  /\  A  e.  RR+ )
)  /\  ( z  e.  RR+  /\  y  e.  X ) )  -> 
( z  /  2
)  e.  RR* )
22 rpxr 9818 . . . . . . . . 9  |-  ( z  e.  RR+  ->  z  e. 
RR* )
2322ad2antrl 490 . . . . . . . 8  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y ) )  /\  ( F  e.  (
( J  CnP  K
) `  P )  /\  A  e.  RR+ )
)  /\  ( z  e.  RR+  /\  y  e.  X ) )  -> 
z  e.  RR* )
24 rphalflt 9840 . . . . . . . . 9  |-  ( z  e.  RR+  ->  ( z  /  2 )  < 
z )
2524ad2antrl 490 . . . . . . . 8  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y ) )  /\  ( F  e.  (
( J  CnP  K
) `  P )  /\  A  e.  RR+ )
)  /\  ( z  e.  RR+  /\  y  e.  X ) )  -> 
( z  /  2
)  <  z )
26 xrlelttr 9963 . . . . . . . . . 10  |-  ( ( ( y C P )  e.  RR*  /\  (
z  /  2 )  e.  RR*  /\  z  e.  RR* )  ->  (
( ( y C P )  <_  (
z  /  2 )  /\  ( z  / 
2 )  <  z
)  ->  ( y C P )  <  z
) )
2726expcomd 1462 . . . . . . . . 9  |-  ( ( ( y C P )  e.  RR*  /\  (
z  /  2 )  e.  RR*  /\  z  e.  RR* )  ->  (
( z  /  2
)  <  z  ->  ( ( y C P )  <_  ( z  /  2 )  -> 
( y C P )  <  z ) ) )
2827imp 124 . . . . . . . 8  |-  ( ( ( ( y C P )  e.  RR*  /\  ( z  /  2
)  e.  RR*  /\  z  e.  RR* )  /\  (
z  /  2 )  <  z )  -> 
( ( y C P )  <_  (
z  /  2 )  ->  ( y C P )  <  z
) )
2919, 21, 23, 25, 28syl31anc 1253 . . . . . . 7  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y ) )  /\  ( F  e.  (
( J  CnP  K
) `  P )  /\  A  e.  RR+ )
)  /\  ( z  e.  RR+  /\  y  e.  X ) )  -> 
( ( y C P )  <_  (
z  /  2 )  ->  ( y C P )  <  z
) )
30 cnpf2 14794 . . . . . . . . . . 11  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  F  e.  (
( J  CnP  K
) `  P )
)  ->  F : X
--> Y )
319, 12, 15, 30syl3anc 1250 . . . . . . . . . 10  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y ) )  /\  ( F  e.  (
( J  CnP  K
) `  P )  /\  A  e.  RR+ )
)  /\  ( z  e.  RR+  /\  y  e.  X ) )  ->  F : X --> Y )
3231, 7ffvelcdmd 5739 . . . . . . . . 9  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y ) )  /\  ( F  e.  (
( J  CnP  K
) `  P )  /\  A  e.  RR+ )
)  /\  ( z  e.  RR+  /\  y  e.  X ) )  -> 
( F `  y
)  e.  Y )
3331, 17ffvelcdmd 5739 . . . . . . . . 9  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y ) )  /\  ( F  e.  (
( J  CnP  K
) `  P )  /\  A  e.  RR+ )
)  /\  ( z  e.  RR+  /\  y  e.  X ) )  -> 
( F `  P
)  e.  Y )
34 xmetcl 14939 . . . . . . . . 9  |-  ( ( D  e.  ( *Met `  Y )  /\  ( F `  y )  e.  Y  /\  ( F `  P
)  e.  Y )  ->  ( ( F `
 y ) D ( F `  P
) )  e.  RR* )
3510, 32, 33, 34syl3anc 1250 . . . . . . . 8  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y ) )  /\  ( F  e.  (
( J  CnP  K
) `  P )  /\  A  e.  RR+ )
)  /\  ( z  e.  RR+  /\  y  e.  X ) )  -> 
( ( F `  y ) D ( F `  P ) )  e.  RR* )
36 simplrr 536 . . . . . . . . 9  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y ) )  /\  ( F  e.  (
( J  CnP  K
) `  P )  /\  A  e.  RR+ )
)  /\  ( z  e.  RR+  /\  y  e.  X ) )  ->  A  e.  RR+ )
3736rpxrd 9854 . . . . . . . 8  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y ) )  /\  ( F  e.  (
( J  CnP  K
) `  P )  /\  A  e.  RR+ )
)  /\  ( z  e.  RR+  /\  y  e.  X ) )  ->  A  e.  RR* )
38 xrltle 9955 . . . . . . . 8  |-  ( ( ( ( F `  y ) D ( F `  P ) )  e.  RR*  /\  A  e.  RR* )  ->  (
( ( F `  y ) D ( F `  P ) )  <  A  -> 
( ( F `  y ) D ( F `  P ) )  <_  A )
)
3935, 37, 38syl2anc 411 . . . . . . 7  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y ) )  /\  ( F  e.  (
( J  CnP  K
) `  P )  /\  A  e.  RR+ )
)  /\  ( z  e.  RR+  /\  y  e.  X ) )  -> 
( ( ( F `
 y ) D ( F `  P
) )  <  A  ->  ( ( F `  y ) D ( F `  P ) )  <_  A )
)
4029, 39imim12d 74 . . . . . 6  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y ) )  /\  ( F  e.  (
( J  CnP  K
) `  P )  /\  A  e.  RR+ )
)  /\  ( z  e.  RR+  /\  y  e.  X ) )  -> 
( ( ( y C P )  < 
z  ->  ( ( F `  y ) D ( F `  P ) )  < 
A )  ->  (
( y C P )  <_  ( z  /  2 )  -> 
( ( F `  y ) D ( F `  P ) )  <_  A )
) )
4140anassrs 400 . . . . 5  |-  ( ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y ) )  /\  ( F  e.  (
( J  CnP  K
) `  P )  /\  A  e.  RR+ )
)  /\  z  e.  RR+ )  /\  y  e.  X )  ->  (
( ( y C P )  <  z  ->  ( ( F `  y ) D ( F `  P ) )  <  A )  ->  ( ( y C P )  <_ 
( z  /  2
)  ->  ( ( F `  y ) D ( F `  P ) )  <_  A ) ) )
4241ralimdva 2575 . . . 4  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y ) )  /\  ( F  e.  (
( J  CnP  K
) `  P )  /\  A  e.  RR+ )
)  /\  z  e.  RR+ )  ->  ( A. y  e.  X  (
( y C P )  <  z  -> 
( ( F `  y ) D ( F `  P ) )  <  A )  ->  A. y  e.  X  ( ( y C P )  <_  (
z  /  2 )  ->  ( ( F `
 y ) D ( F `  P
) )  <_  A
) ) )
4342impr 379 . . 3  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y ) )  /\  ( F  e.  (
( J  CnP  K
) `  P )  /\  A  e.  RR+ )
)  /\  ( z  e.  RR+  /\  A. y  e.  X  ( (
y C P )  <  z  ->  (
( F `  y
) D ( F `
 P ) )  <  A ) ) )  ->  A. y  e.  X  ( (
y C P )  <_  ( z  / 
2 )  ->  (
( F `  y
) D ( F `
 P ) )  <_  A ) )
44 breq2 4063 . . . 4  |-  ( x  =  ( z  / 
2 )  ->  (
( y C P )  <_  x  <->  ( y C P )  <_  (
z  /  2 ) ) )
4544rspceaimv 2892 . . 3  |-  ( ( ( z  /  2
)  e.  RR+  /\  A. y  e.  X  (
( y C P )  <_  ( z  /  2 )  -> 
( ( F `  y ) D ( F `  P ) )  <_  A )
)  ->  E. x  e.  RR+  A. y  e.  X  ( ( y C P )  <_  x  ->  ( ( F `
 y ) D ( F `  P
) )  <_  A
) )
465, 43, 45syl2anc 411 . 2  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y ) )  /\  ( F  e.  (
( J  CnP  K
) `  P )  /\  A  e.  RR+ )
)  /\  ( z  e.  RR+  /\  A. y  e.  X  ( (
y C P )  <  z  ->  (
( F `  y
) D ( F `
 P ) )  <  A ) ) )  ->  E. x  e.  RR+  A. y  e.  X  ( ( y C P )  <_  x  ->  ( ( F `
 y ) D ( F `  P
) )  <_  A
) )
473, 46rexlimddv 2630 1  |-  ( ( ( C  e.  ( *Met `  X
)  /\  D  e.  ( *Met `  Y
) )  /\  ( F  e.  ( ( J  CnP  K ) `  P )  /\  A  e.  RR+ ) )  ->  E. x  e.  RR+  A. y  e.  X  ( (
y C P )  <_  x  ->  (
( F `  y
) D ( F `
 P ) )  <_  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 981    = wceq 1373    e. wcel 2178   A.wral 2486   E.wrex 2487   class class class wbr 4059   -->wf 5286   ` cfv 5290  (class class class)co 5967   RR*cxr 8141    < clt 8142    <_ cle 8143    / cdiv 8780   2c2 9122   RR+crp 9810   *Metcxmet 14413   MetOpencmopn 14418   Topctop 14584  TopOnctopon 14597    CnP ccnp 14773
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-iinf 4654  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-mulrcl 8059  ax-addcom 8060  ax-mulcom 8061  ax-addass 8062  ax-mulass 8063  ax-distr 8064  ax-i2m1 8065  ax-0lt1 8066  ax-1rid 8067  ax-0id 8068  ax-rnegex 8069  ax-precex 8070  ax-cnre 8071  ax-pre-ltirr 8072  ax-pre-ltwlin 8073  ax-pre-lttrn 8074  ax-pre-apti 8075  ax-pre-ltadd 8076  ax-pre-mulgt0 8077  ax-pre-mulext 8078  ax-arch 8079  ax-caucvg 8080
This theorem depends on definitions:  df-bi 117  df-stab 833  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rmo 2494  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-if 3580  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-id 4358  df-po 4361  df-iso 4362  df-iord 4431  df-on 4433  df-ilim 4434  df-suc 4436  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-isom 5299  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-recs 6414  df-frec 6500  df-map 6760  df-sup 7112  df-inf 7113  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148  df-sub 8280  df-neg 8281  df-reap 8683  df-ap 8690  df-div 8781  df-inn 9072  df-2 9130  df-3 9131  df-4 9132  df-n0 9331  df-z 9408  df-uz 9684  df-q 9776  df-rp 9811  df-xneg 9929  df-xadd 9930  df-seqfrec 10630  df-exp 10721  df-cj 11268  df-re 11269  df-im 11270  df-rsqrt 11424  df-abs 11425  df-topgen 13207  df-psmet 14420  df-xmet 14421  df-bl 14423  df-mopn 14424  df-top 14585  df-topon 14598  df-bases 14630  df-cnp 14776
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator