ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  metcnpi3 Unicode version

Theorem metcnpi3 12686
Description: Epsilon-delta property of a metric space function continuous at  P. A variation of metcnpi2 12685 with non-strict ordering. (Contributed by NM, 16-Dec-2007.) (Revised by Mario Carneiro, 13-Nov-2013.)
Hypotheses
Ref Expression
metcn.2  |-  J  =  ( MetOpen `  C )
metcn.4  |-  K  =  ( MetOpen `  D )
Assertion
Ref Expression
metcnpi3  |-  ( ( ( C  e.  ( *Met `  X
)  /\  D  e.  ( *Met `  Y
) )  /\  ( F  e.  ( ( J  CnP  K ) `  P )  /\  A  e.  RR+ ) )  ->  E. x  e.  RR+  A. y  e.  X  ( (
y C P )  <_  x  ->  (
( F `  y
) D ( F `
 P ) )  <_  A ) )
Distinct variable groups:    x, y, F   
x, J, y    x, K, y    x, X, y   
x, Y, y    x, A, y    x, C, y   
x, D, y    x, P, y

Proof of Theorem metcnpi3
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 metcn.2 . . 3  |-  J  =  ( MetOpen `  C )
2 metcn.4 . . 3  |-  K  =  ( MetOpen `  D )
31, 2metcnpi2 12685 . 2  |-  ( ( ( C  e.  ( *Met `  X
)  /\  D  e.  ( *Met `  Y
) )  /\  ( F  e.  ( ( J  CnP  K ) `  P )  /\  A  e.  RR+ ) )  ->  E. z  e.  RR+  A. y  e.  X  ( (
y C P )  <  z  ->  (
( F `  y
) D ( F `
 P ) )  <  A ) )
4 rphalfcl 9469 . . . 4  |-  ( z  e.  RR+  ->  ( z  /  2 )  e.  RR+ )
54ad2antrl 481 . . 3  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y ) )  /\  ( F  e.  (
( J  CnP  K
) `  P )  /\  A  e.  RR+ )
)  /\  ( z  e.  RR+  /\  A. y  e.  X  ( (
y C P )  <  z  ->  (
( F `  y
) D ( F `
 P ) )  <  A ) ) )  ->  ( z  /  2 )  e.  RR+ )
6 simplll 522 . . . . . . . . 9  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y ) )  /\  ( F  e.  (
( J  CnP  K
) `  P )  /\  A  e.  RR+ )
)  /\  ( z  e.  RR+  /\  y  e.  X ) )  ->  C  e.  ( *Met `  X ) )
7 simprr 521 . . . . . . . . 9  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y ) )  /\  ( F  e.  (
( J  CnP  K
) `  P )  /\  A  e.  RR+ )
)  /\  ( z  e.  RR+  /\  y  e.  X ) )  -> 
y  e.  X )
81mopntopon 12612 . . . . . . . . . . 11  |-  ( C  e.  ( *Met `  X )  ->  J  e.  (TopOn `  X )
)
96, 8syl 14 . . . . . . . . . 10  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y ) )  /\  ( F  e.  (
( J  CnP  K
) `  P )  /\  A  e.  RR+ )
)  /\  ( z  e.  RR+  /\  y  e.  X ) )  ->  J  e.  (TopOn `  X
) )
10 simpllr 523 . . . . . . . . . . . 12  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y ) )  /\  ( F  e.  (
( J  CnP  K
) `  P )  /\  A  e.  RR+ )
)  /\  ( z  e.  RR+  /\  y  e.  X ) )  ->  D  e.  ( *Met `  Y ) )
112mopntopon 12612 . . . . . . . . . . . 12  |-  ( D  e.  ( *Met `  Y )  ->  K  e.  (TopOn `  Y )
)
1210, 11syl 14 . . . . . . . . . . 11  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y ) )  /\  ( F  e.  (
( J  CnP  K
) `  P )  /\  A  e.  RR+ )
)  /\  ( z  e.  RR+  /\  y  e.  X ) )  ->  K  e.  (TopOn `  Y
) )
13 topontop 12181 . . . . . . . . . . 11  |-  ( K  e.  (TopOn `  Y
)  ->  K  e.  Top )
1412, 13syl 14 . . . . . . . . . 10  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y ) )  /\  ( F  e.  (
( J  CnP  K
) `  P )  /\  A  e.  RR+ )
)  /\  ( z  e.  RR+  /\  y  e.  X ) )  ->  K  e.  Top )
15 simplrl 524 . . . . . . . . . 10  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y ) )  /\  ( F  e.  (
( J  CnP  K
) `  P )  /\  A  e.  RR+ )
)  /\  ( z  e.  RR+  /\  y  e.  X ) )  ->  F  e.  ( ( J  CnP  K ) `  P ) )
16 cnprcl2k 12375 . . . . . . . . . 10  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  Top  /\  F  e.  ( ( J  CnP  K ) `  P ) )  ->  P  e.  X )
179, 14, 15, 16syl3anc 1216 . . . . . . . . 9  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y ) )  /\  ( F  e.  (
( J  CnP  K
) `  P )  /\  A  e.  RR+ )
)  /\  ( z  e.  RR+  /\  y  e.  X ) )  ->  P  e.  X )
18 xmetcl 12521 . . . . . . . . 9  |-  ( ( C  e.  ( *Met `  X )  /\  y  e.  X  /\  P  e.  X
)  ->  ( y C P )  e.  RR* )
196, 7, 17, 18syl3anc 1216 . . . . . . . 8  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y ) )  /\  ( F  e.  (
( J  CnP  K
) `  P )  /\  A  e.  RR+ )
)  /\  ( z  e.  RR+  /\  y  e.  X ) )  -> 
( y C P )  e.  RR* )
204ad2antrl 481 . . . . . . . . 9  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y ) )  /\  ( F  e.  (
( J  CnP  K
) `  P )  /\  A  e.  RR+ )
)  /\  ( z  e.  RR+  /\  y  e.  X ) )  -> 
( z  /  2
)  e.  RR+ )
2120rpxrd 9484 . . . . . . . 8  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y ) )  /\  ( F  e.  (
( J  CnP  K
) `  P )  /\  A  e.  RR+ )
)  /\  ( z  e.  RR+  /\  y  e.  X ) )  -> 
( z  /  2
)  e.  RR* )
22 rpxr 9449 . . . . . . . . 9  |-  ( z  e.  RR+  ->  z  e. 
RR* )
2322ad2antrl 481 . . . . . . . 8  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y ) )  /\  ( F  e.  (
( J  CnP  K
) `  P )  /\  A  e.  RR+ )
)  /\  ( z  e.  RR+  /\  y  e.  X ) )  -> 
z  e.  RR* )
24 rphalflt 9471 . . . . . . . . 9  |-  ( z  e.  RR+  ->  ( z  /  2 )  < 
z )
2524ad2antrl 481 . . . . . . . 8  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y ) )  /\  ( F  e.  (
( J  CnP  K
) `  P )  /\  A  e.  RR+ )
)  /\  ( z  e.  RR+  /\  y  e.  X ) )  -> 
( z  /  2
)  <  z )
26 xrlelttr 9589 . . . . . . . . . 10  |-  ( ( ( y C P )  e.  RR*  /\  (
z  /  2 )  e.  RR*  /\  z  e.  RR* )  ->  (
( ( y C P )  <_  (
z  /  2 )  /\  ( z  / 
2 )  <  z
)  ->  ( y C P )  <  z
) )
2726expcomd 1417 . . . . . . . . 9  |-  ( ( ( y C P )  e.  RR*  /\  (
z  /  2 )  e.  RR*  /\  z  e.  RR* )  ->  (
( z  /  2
)  <  z  ->  ( ( y C P )  <_  ( z  /  2 )  -> 
( y C P )  <  z ) ) )
2827imp 123 . . . . . . . 8  |-  ( ( ( ( y C P )  e.  RR*  /\  ( z  /  2
)  e.  RR*  /\  z  e.  RR* )  /\  (
z  /  2 )  <  z )  -> 
( ( y C P )  <_  (
z  /  2 )  ->  ( y C P )  <  z
) )
2919, 21, 23, 25, 28syl31anc 1219 . . . . . . 7  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y ) )  /\  ( F  e.  (
( J  CnP  K
) `  P )  /\  A  e.  RR+ )
)  /\  ( z  e.  RR+  /\  y  e.  X ) )  -> 
( ( y C P )  <_  (
z  /  2 )  ->  ( y C P )  <  z
) )
30 cnpf2 12376 . . . . . . . . . . 11  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  F  e.  (
( J  CnP  K
) `  P )
)  ->  F : X
--> Y )
319, 12, 15, 30syl3anc 1216 . . . . . . . . . 10  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y ) )  /\  ( F  e.  (
( J  CnP  K
) `  P )  /\  A  e.  RR+ )
)  /\  ( z  e.  RR+  /\  y  e.  X ) )  ->  F : X --> Y )
3231, 7ffvelrnd 5556 . . . . . . . . 9  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y ) )  /\  ( F  e.  (
( J  CnP  K
) `  P )  /\  A  e.  RR+ )
)  /\  ( z  e.  RR+  /\  y  e.  X ) )  -> 
( F `  y
)  e.  Y )
3331, 17ffvelrnd 5556 . . . . . . . . 9  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y ) )  /\  ( F  e.  (
( J  CnP  K
) `  P )  /\  A  e.  RR+ )
)  /\  ( z  e.  RR+  /\  y  e.  X ) )  -> 
( F `  P
)  e.  Y )
34 xmetcl 12521 . . . . . . . . 9  |-  ( ( D  e.  ( *Met `  Y )  /\  ( F `  y )  e.  Y  /\  ( F `  P
)  e.  Y )  ->  ( ( F `
 y ) D ( F `  P
) )  e.  RR* )
3510, 32, 33, 34syl3anc 1216 . . . . . . . 8  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y ) )  /\  ( F  e.  (
( J  CnP  K
) `  P )  /\  A  e.  RR+ )
)  /\  ( z  e.  RR+  /\  y  e.  X ) )  -> 
( ( F `  y ) D ( F `  P ) )  e.  RR* )
36 simplrr 525 . . . . . . . . 9  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y ) )  /\  ( F  e.  (
( J  CnP  K
) `  P )  /\  A  e.  RR+ )
)  /\  ( z  e.  RR+  /\  y  e.  X ) )  ->  A  e.  RR+ )
3736rpxrd 9484 . . . . . . . 8  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y ) )  /\  ( F  e.  (
( J  CnP  K
) `  P )  /\  A  e.  RR+ )
)  /\  ( z  e.  RR+  /\  y  e.  X ) )  ->  A  e.  RR* )
38 xrltle 9584 . . . . . . . 8  |-  ( ( ( ( F `  y ) D ( F `  P ) )  e.  RR*  /\  A  e.  RR* )  ->  (
( ( F `  y ) D ( F `  P ) )  <  A  -> 
( ( F `  y ) D ( F `  P ) )  <_  A )
)
3935, 37, 38syl2anc 408 . . . . . . 7  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y ) )  /\  ( F  e.  (
( J  CnP  K
) `  P )  /\  A  e.  RR+ )
)  /\  ( z  e.  RR+  /\  y  e.  X ) )  -> 
( ( ( F `
 y ) D ( F `  P
) )  <  A  ->  ( ( F `  y ) D ( F `  P ) )  <_  A )
)
4029, 39imim12d 74 . . . . . 6  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y ) )  /\  ( F  e.  (
( J  CnP  K
) `  P )  /\  A  e.  RR+ )
)  /\  ( z  e.  RR+  /\  y  e.  X ) )  -> 
( ( ( y C P )  < 
z  ->  ( ( F `  y ) D ( F `  P ) )  < 
A )  ->  (
( y C P )  <_  ( z  /  2 )  -> 
( ( F `  y ) D ( F `  P ) )  <_  A )
) )
4140anassrs 397 . . . . 5  |-  ( ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y ) )  /\  ( F  e.  (
( J  CnP  K
) `  P )  /\  A  e.  RR+ )
)  /\  z  e.  RR+ )  /\  y  e.  X )  ->  (
( ( y C P )  <  z  ->  ( ( F `  y ) D ( F `  P ) )  <  A )  ->  ( ( y C P )  <_ 
( z  /  2
)  ->  ( ( F `  y ) D ( F `  P ) )  <_  A ) ) )
4241ralimdva 2499 . . . 4  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y ) )  /\  ( F  e.  (
( J  CnP  K
) `  P )  /\  A  e.  RR+ )
)  /\  z  e.  RR+ )  ->  ( A. y  e.  X  (
( y C P )  <  z  -> 
( ( F `  y ) D ( F `  P ) )  <  A )  ->  A. y  e.  X  ( ( y C P )  <_  (
z  /  2 )  ->  ( ( F `
 y ) D ( F `  P
) )  <_  A
) ) )
4342impr 376 . . 3  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y ) )  /\  ( F  e.  (
( J  CnP  K
) `  P )  /\  A  e.  RR+ )
)  /\  ( z  e.  RR+  /\  A. y  e.  X  ( (
y C P )  <  z  ->  (
( F `  y
) D ( F `
 P ) )  <  A ) ) )  ->  A. y  e.  X  ( (
y C P )  <_  ( z  / 
2 )  ->  (
( F `  y
) D ( F `
 P ) )  <_  A ) )
44 breq2 3933 . . . 4  |-  ( x  =  ( z  / 
2 )  ->  (
( y C P )  <_  x  <->  ( y C P )  <_  (
z  /  2 ) ) )
4544rspceaimv 2797 . . 3  |-  ( ( ( z  /  2
)  e.  RR+  /\  A. y  e.  X  (
( y C P )  <_  ( z  /  2 )  -> 
( ( F `  y ) D ( F `  P ) )  <_  A )
)  ->  E. x  e.  RR+  A. y  e.  X  ( ( y C P )  <_  x  ->  ( ( F `
 y ) D ( F `  P
) )  <_  A
) )
465, 43, 45syl2anc 408 . 2  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y ) )  /\  ( F  e.  (
( J  CnP  K
) `  P )  /\  A  e.  RR+ )
)  /\  ( z  e.  RR+  /\  A. y  e.  X  ( (
y C P )  <  z  ->  (
( F `  y
) D ( F `
 P ) )  <  A ) ) )  ->  E. x  e.  RR+  A. y  e.  X  ( ( y C P )  <_  x  ->  ( ( F `
 y ) D ( F `  P
) )  <_  A
) )
473, 46rexlimddv 2554 1  |-  ( ( ( C  e.  ( *Met `  X
)  /\  D  e.  ( *Met `  Y
) )  /\  ( F  e.  ( ( J  CnP  K ) `  P )  /\  A  e.  RR+ ) )  ->  E. x  e.  RR+  A. y  e.  X  ( (
y C P )  <_  x  ->  (
( F `  y
) D ( F `
 P ) )  <_  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    /\ w3a 962    = wceq 1331    e. wcel 1480   A.wral 2416   E.wrex 2417   class class class wbr 3929   -->wf 5119   ` cfv 5123  (class class class)co 5774   RR*cxr 7799    < clt 7800    <_ cle 7801    / cdiv 8432   2c2 8771   RR+crp 9441   *Metcxmet 12149   MetOpencmopn 12154   Topctop 12164  TopOnctopon 12177    CnP ccnp 12355
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-mulrcl 7719  ax-addcom 7720  ax-mulcom 7721  ax-addass 7722  ax-mulass 7723  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-1rid 7727  ax-0id 7728  ax-rnegex 7729  ax-precex 7730  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-apti 7735  ax-pre-ltadd 7736  ax-pre-mulgt0 7737  ax-pre-mulext 7738  ax-arch 7739  ax-caucvg 7740
This theorem depends on definitions:  df-bi 116  df-stab 816  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-isom 5132  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-frec 6288  df-map 6544  df-sup 6871  df-inf 6872  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-reap 8337  df-ap 8344  df-div 8433  df-inn 8721  df-2 8779  df-3 8780  df-4 8781  df-n0 8978  df-z 9055  df-uz 9327  df-q 9412  df-rp 9442  df-xneg 9559  df-xadd 9560  df-seqfrec 10219  df-exp 10293  df-cj 10614  df-re 10615  df-im 10616  df-rsqrt 10770  df-abs 10771  df-topgen 12141  df-psmet 12156  df-xmet 12157  df-bl 12159  df-mopn 12160  df-top 12165  df-topon 12178  df-bases 12210  df-cnp 12358
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator