ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  metcnpi3 Unicode version

Theorem metcnpi3 14056
Description: Epsilon-delta property of a metric space function continuous at  P. A variation of metcnpi2 14055 with non-strict ordering. (Contributed by NM, 16-Dec-2007.) (Revised by Mario Carneiro, 13-Nov-2013.)
Hypotheses
Ref Expression
metcn.2  |-  J  =  ( MetOpen `  C )
metcn.4  |-  K  =  ( MetOpen `  D )
Assertion
Ref Expression
metcnpi3  |-  ( ( ( C  e.  ( *Met `  X
)  /\  D  e.  ( *Met `  Y
) )  /\  ( F  e.  ( ( J  CnP  K ) `  P )  /\  A  e.  RR+ ) )  ->  E. x  e.  RR+  A. y  e.  X  ( (
y C P )  <_  x  ->  (
( F `  y
) D ( F `
 P ) )  <_  A ) )
Distinct variable groups:    x, y, F   
x, J, y    x, K, y    x, X, y   
x, Y, y    x, A, y    x, C, y   
x, D, y    x, P, y

Proof of Theorem metcnpi3
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 metcn.2 . . 3  |-  J  =  ( MetOpen `  C )
2 metcn.4 . . 3  |-  K  =  ( MetOpen `  D )
31, 2metcnpi2 14055 . 2  |-  ( ( ( C  e.  ( *Met `  X
)  /\  D  e.  ( *Met `  Y
) )  /\  ( F  e.  ( ( J  CnP  K ) `  P )  /\  A  e.  RR+ ) )  ->  E. z  e.  RR+  A. y  e.  X  ( (
y C P )  <  z  ->  (
( F `  y
) D ( F `
 P ) )  <  A ) )
4 rphalfcl 9683 . . . 4  |-  ( z  e.  RR+  ->  ( z  /  2 )  e.  RR+ )
54ad2antrl 490 . . 3  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y ) )  /\  ( F  e.  (
( J  CnP  K
) `  P )  /\  A  e.  RR+ )
)  /\  ( z  e.  RR+  /\  A. y  e.  X  ( (
y C P )  <  z  ->  (
( F `  y
) D ( F `
 P ) )  <  A ) ) )  ->  ( z  /  2 )  e.  RR+ )
6 simplll 533 . . . . . . . . 9  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y ) )  /\  ( F  e.  (
( J  CnP  K
) `  P )  /\  A  e.  RR+ )
)  /\  ( z  e.  RR+  /\  y  e.  X ) )  ->  C  e.  ( *Met `  X ) )
7 simprr 531 . . . . . . . . 9  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y ) )  /\  ( F  e.  (
( J  CnP  K
) `  P )  /\  A  e.  RR+ )
)  /\  ( z  e.  RR+  /\  y  e.  X ) )  -> 
y  e.  X )
81mopntopon 13982 . . . . . . . . . . 11  |-  ( C  e.  ( *Met `  X )  ->  J  e.  (TopOn `  X )
)
96, 8syl 14 . . . . . . . . . 10  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y ) )  /\  ( F  e.  (
( J  CnP  K
) `  P )  /\  A  e.  RR+ )
)  /\  ( z  e.  RR+  /\  y  e.  X ) )  ->  J  e.  (TopOn `  X
) )
10 simpllr 534 . . . . . . . . . . . 12  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y ) )  /\  ( F  e.  (
( J  CnP  K
) `  P )  /\  A  e.  RR+ )
)  /\  ( z  e.  RR+  /\  y  e.  X ) )  ->  D  e.  ( *Met `  Y ) )
112mopntopon 13982 . . . . . . . . . . . 12  |-  ( D  e.  ( *Met `  Y )  ->  K  e.  (TopOn `  Y )
)
1210, 11syl 14 . . . . . . . . . . 11  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y ) )  /\  ( F  e.  (
( J  CnP  K
) `  P )  /\  A  e.  RR+ )
)  /\  ( z  e.  RR+  /\  y  e.  X ) )  ->  K  e.  (TopOn `  Y
) )
13 topontop 13553 . . . . . . . . . . 11  |-  ( K  e.  (TopOn `  Y
)  ->  K  e.  Top )
1412, 13syl 14 . . . . . . . . . 10  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y ) )  /\  ( F  e.  (
( J  CnP  K
) `  P )  /\  A  e.  RR+ )
)  /\  ( z  e.  RR+  /\  y  e.  X ) )  ->  K  e.  Top )
15 simplrl 535 . . . . . . . . . 10  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y ) )  /\  ( F  e.  (
( J  CnP  K
) `  P )  /\  A  e.  RR+ )
)  /\  ( z  e.  RR+  /\  y  e.  X ) )  ->  F  e.  ( ( J  CnP  K ) `  P ) )
16 cnprcl2k 13745 . . . . . . . . . 10  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  Top  /\  F  e.  ( ( J  CnP  K ) `  P ) )  ->  P  e.  X )
179, 14, 15, 16syl3anc 1238 . . . . . . . . 9  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y ) )  /\  ( F  e.  (
( J  CnP  K
) `  P )  /\  A  e.  RR+ )
)  /\  ( z  e.  RR+  /\  y  e.  X ) )  ->  P  e.  X )
18 xmetcl 13891 . . . . . . . . 9  |-  ( ( C  e.  ( *Met `  X )  /\  y  e.  X  /\  P  e.  X
)  ->  ( y C P )  e.  RR* )
196, 7, 17, 18syl3anc 1238 . . . . . . . 8  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y ) )  /\  ( F  e.  (
( J  CnP  K
) `  P )  /\  A  e.  RR+ )
)  /\  ( z  e.  RR+  /\  y  e.  X ) )  -> 
( y C P )  e.  RR* )
204ad2antrl 490 . . . . . . . . 9  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y ) )  /\  ( F  e.  (
( J  CnP  K
) `  P )  /\  A  e.  RR+ )
)  /\  ( z  e.  RR+  /\  y  e.  X ) )  -> 
( z  /  2
)  e.  RR+ )
2120rpxrd 9699 . . . . . . . 8  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y ) )  /\  ( F  e.  (
( J  CnP  K
) `  P )  /\  A  e.  RR+ )
)  /\  ( z  e.  RR+  /\  y  e.  X ) )  -> 
( z  /  2
)  e.  RR* )
22 rpxr 9663 . . . . . . . . 9  |-  ( z  e.  RR+  ->  z  e. 
RR* )
2322ad2antrl 490 . . . . . . . 8  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y ) )  /\  ( F  e.  (
( J  CnP  K
) `  P )  /\  A  e.  RR+ )
)  /\  ( z  e.  RR+  /\  y  e.  X ) )  -> 
z  e.  RR* )
24 rphalflt 9685 . . . . . . . . 9  |-  ( z  e.  RR+  ->  ( z  /  2 )  < 
z )
2524ad2antrl 490 . . . . . . . 8  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y ) )  /\  ( F  e.  (
( J  CnP  K
) `  P )  /\  A  e.  RR+ )
)  /\  ( z  e.  RR+  /\  y  e.  X ) )  -> 
( z  /  2
)  <  z )
26 xrlelttr 9808 . . . . . . . . . 10  |-  ( ( ( y C P )  e.  RR*  /\  (
z  /  2 )  e.  RR*  /\  z  e.  RR* )  ->  (
( ( y C P )  <_  (
z  /  2 )  /\  ( z  / 
2 )  <  z
)  ->  ( y C P )  <  z
) )
2726expcomd 1441 . . . . . . . . 9  |-  ( ( ( y C P )  e.  RR*  /\  (
z  /  2 )  e.  RR*  /\  z  e.  RR* )  ->  (
( z  /  2
)  <  z  ->  ( ( y C P )  <_  ( z  /  2 )  -> 
( y C P )  <  z ) ) )
2827imp 124 . . . . . . . 8  |-  ( ( ( ( y C P )  e.  RR*  /\  ( z  /  2
)  e.  RR*  /\  z  e.  RR* )  /\  (
z  /  2 )  <  z )  -> 
( ( y C P )  <_  (
z  /  2 )  ->  ( y C P )  <  z
) )
2919, 21, 23, 25, 28syl31anc 1241 . . . . . . 7  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y ) )  /\  ( F  e.  (
( J  CnP  K
) `  P )  /\  A  e.  RR+ )
)  /\  ( z  e.  RR+  /\  y  e.  X ) )  -> 
( ( y C P )  <_  (
z  /  2 )  ->  ( y C P )  <  z
) )
30 cnpf2 13746 . . . . . . . . . . 11  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  F  e.  (
( J  CnP  K
) `  P )
)  ->  F : X
--> Y )
319, 12, 15, 30syl3anc 1238 . . . . . . . . . 10  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y ) )  /\  ( F  e.  (
( J  CnP  K
) `  P )  /\  A  e.  RR+ )
)  /\  ( z  e.  RR+  /\  y  e.  X ) )  ->  F : X --> Y )
3231, 7ffvelcdmd 5654 . . . . . . . . 9  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y ) )  /\  ( F  e.  (
( J  CnP  K
) `  P )  /\  A  e.  RR+ )
)  /\  ( z  e.  RR+  /\  y  e.  X ) )  -> 
( F `  y
)  e.  Y )
3331, 17ffvelcdmd 5654 . . . . . . . . 9  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y ) )  /\  ( F  e.  (
( J  CnP  K
) `  P )  /\  A  e.  RR+ )
)  /\  ( z  e.  RR+  /\  y  e.  X ) )  -> 
( F `  P
)  e.  Y )
34 xmetcl 13891 . . . . . . . . 9  |-  ( ( D  e.  ( *Met `  Y )  /\  ( F `  y )  e.  Y  /\  ( F `  P
)  e.  Y )  ->  ( ( F `
 y ) D ( F `  P
) )  e.  RR* )
3510, 32, 33, 34syl3anc 1238 . . . . . . . 8  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y ) )  /\  ( F  e.  (
( J  CnP  K
) `  P )  /\  A  e.  RR+ )
)  /\  ( z  e.  RR+  /\  y  e.  X ) )  -> 
( ( F `  y ) D ( F `  P ) )  e.  RR* )
36 simplrr 536 . . . . . . . . 9  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y ) )  /\  ( F  e.  (
( J  CnP  K
) `  P )  /\  A  e.  RR+ )
)  /\  ( z  e.  RR+  /\  y  e.  X ) )  ->  A  e.  RR+ )
3736rpxrd 9699 . . . . . . . 8  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y ) )  /\  ( F  e.  (
( J  CnP  K
) `  P )  /\  A  e.  RR+ )
)  /\  ( z  e.  RR+  /\  y  e.  X ) )  ->  A  e.  RR* )
38 xrltle 9800 . . . . . . . 8  |-  ( ( ( ( F `  y ) D ( F `  P ) )  e.  RR*  /\  A  e.  RR* )  ->  (
( ( F `  y ) D ( F `  P ) )  <  A  -> 
( ( F `  y ) D ( F `  P ) )  <_  A )
)
3935, 37, 38syl2anc 411 . . . . . . 7  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y ) )  /\  ( F  e.  (
( J  CnP  K
) `  P )  /\  A  e.  RR+ )
)  /\  ( z  e.  RR+  /\  y  e.  X ) )  -> 
( ( ( F `
 y ) D ( F `  P
) )  <  A  ->  ( ( F `  y ) D ( F `  P ) )  <_  A )
)
4029, 39imim12d 74 . . . . . 6  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y ) )  /\  ( F  e.  (
( J  CnP  K
) `  P )  /\  A  e.  RR+ )
)  /\  ( z  e.  RR+  /\  y  e.  X ) )  -> 
( ( ( y C P )  < 
z  ->  ( ( F `  y ) D ( F `  P ) )  < 
A )  ->  (
( y C P )  <_  ( z  /  2 )  -> 
( ( F `  y ) D ( F `  P ) )  <_  A )
) )
4140anassrs 400 . . . . 5  |-  ( ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y ) )  /\  ( F  e.  (
( J  CnP  K
) `  P )  /\  A  e.  RR+ )
)  /\  z  e.  RR+ )  /\  y  e.  X )  ->  (
( ( y C P )  <  z  ->  ( ( F `  y ) D ( F `  P ) )  <  A )  ->  ( ( y C P )  <_ 
( z  /  2
)  ->  ( ( F `  y ) D ( F `  P ) )  <_  A ) ) )
4241ralimdva 2544 . . . 4  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y ) )  /\  ( F  e.  (
( J  CnP  K
) `  P )  /\  A  e.  RR+ )
)  /\  z  e.  RR+ )  ->  ( A. y  e.  X  (
( y C P )  <  z  -> 
( ( F `  y ) D ( F `  P ) )  <  A )  ->  A. y  e.  X  ( ( y C P )  <_  (
z  /  2 )  ->  ( ( F `
 y ) D ( F `  P
) )  <_  A
) ) )
4342impr 379 . . 3  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y ) )  /\  ( F  e.  (
( J  CnP  K
) `  P )  /\  A  e.  RR+ )
)  /\  ( z  e.  RR+  /\  A. y  e.  X  ( (
y C P )  <  z  ->  (
( F `  y
) D ( F `
 P ) )  <  A ) ) )  ->  A. y  e.  X  ( (
y C P )  <_  ( z  / 
2 )  ->  (
( F `  y
) D ( F `
 P ) )  <_  A ) )
44 breq2 4009 . . . 4  |-  ( x  =  ( z  / 
2 )  ->  (
( y C P )  <_  x  <->  ( y C P )  <_  (
z  /  2 ) ) )
4544rspceaimv 2851 . . 3  |-  ( ( ( z  /  2
)  e.  RR+  /\  A. y  e.  X  (
( y C P )  <_  ( z  /  2 )  -> 
( ( F `  y ) D ( F `  P ) )  <_  A )
)  ->  E. x  e.  RR+  A. y  e.  X  ( ( y C P )  <_  x  ->  ( ( F `
 y ) D ( F `  P
) )  <_  A
) )
465, 43, 45syl2anc 411 . 2  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y ) )  /\  ( F  e.  (
( J  CnP  K
) `  P )  /\  A  e.  RR+ )
)  /\  ( z  e.  RR+  /\  A. y  e.  X  ( (
y C P )  <  z  ->  (
( F `  y
) D ( F `
 P ) )  <  A ) ) )  ->  E. x  e.  RR+  A. y  e.  X  ( ( y C P )  <_  x  ->  ( ( F `
 y ) D ( F `  P
) )  <_  A
) )
473, 46rexlimddv 2599 1  |-  ( ( ( C  e.  ( *Met `  X
)  /\  D  e.  ( *Met `  Y
) )  /\  ( F  e.  ( ( J  CnP  K ) `  P )  /\  A  e.  RR+ ) )  ->  E. x  e.  RR+  A. y  e.  X  ( (
y C P )  <_  x  ->  (
( F `  y
) D ( F `
 P ) )  <_  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 978    = wceq 1353    e. wcel 2148   A.wral 2455   E.wrex 2456   class class class wbr 4005   -->wf 5214   ` cfv 5218  (class class class)co 5877   RR*cxr 7993    < clt 7994    <_ cle 7995    / cdiv 8631   2c2 8972   RR+crp 9655   *Metcxmet 13479   MetOpencmopn 13484   Topctop 13536  TopOnctopon 13549    CnP ccnp 13725
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-iinf 4589  ax-cnex 7904  ax-resscn 7905  ax-1cn 7906  ax-1re 7907  ax-icn 7908  ax-addcl 7909  ax-addrcl 7910  ax-mulcl 7911  ax-mulrcl 7912  ax-addcom 7913  ax-mulcom 7914  ax-addass 7915  ax-mulass 7916  ax-distr 7917  ax-i2m1 7918  ax-0lt1 7919  ax-1rid 7920  ax-0id 7921  ax-rnegex 7922  ax-precex 7923  ax-cnre 7924  ax-pre-ltirr 7925  ax-pre-ltwlin 7926  ax-pre-lttrn 7927  ax-pre-apti 7928  ax-pre-ltadd 7929  ax-pre-mulgt0 7930  ax-pre-mulext 7931  ax-arch 7932  ax-caucvg 7933
This theorem depends on definitions:  df-bi 117  df-stab 831  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-if 3537  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-tr 4104  df-id 4295  df-po 4298  df-iso 4299  df-iord 4368  df-on 4370  df-ilim 4371  df-suc 4373  df-iom 4592  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-isom 5227  df-riota 5833  df-ov 5880  df-oprab 5881  df-mpo 5882  df-1st 6143  df-2nd 6144  df-recs 6308  df-frec 6394  df-map 6652  df-sup 6985  df-inf 6986  df-pnf 7996  df-mnf 7997  df-xr 7998  df-ltxr 7999  df-le 8000  df-sub 8132  df-neg 8133  df-reap 8534  df-ap 8541  df-div 8632  df-inn 8922  df-2 8980  df-3 8981  df-4 8982  df-n0 9179  df-z 9256  df-uz 9531  df-q 9622  df-rp 9656  df-xneg 9774  df-xadd 9775  df-seqfrec 10448  df-exp 10522  df-cj 10853  df-re 10854  df-im 10855  df-rsqrt 11009  df-abs 11010  df-topgen 12714  df-psmet 13486  df-xmet 13487  df-bl 13489  df-mopn 13490  df-top 13537  df-topon 13550  df-bases 13582  df-cnp 13728
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator