ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rpxrd GIF version

Theorem rpxrd 9496
Description: A positive real is an extended real. (Contributed by Mario Carneiro, 28-May-2016.)
Hypothesis
Ref Expression
rpred.1 (𝜑𝐴 ∈ ℝ+)
Assertion
Ref Expression
rpxrd (𝜑𝐴 ∈ ℝ*)

Proof of Theorem rpxrd
StepHypRef Expression
1 rpred.1 . . 3 (𝜑𝐴 ∈ ℝ+)
21rpred 9495 . 2 (𝜑𝐴 ∈ ℝ)
32rexrd 7827 1 (𝜑𝐴 ∈ ℝ*)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 1480  *cxr 7811  +crp 9453
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121
This theorem depends on definitions:  df-bi 116  df-tru 1334  df-nf 1437  df-sb 1736  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-rab 2425  df-v 2688  df-un 3075  df-in 3077  df-ss 3084  df-xr 7816  df-rp 9454
This theorem is referenced by:  ssblex  12614  metequiv2  12679  metss2lem  12680  metcnp  12695  metcnpi3  12700
  Copyright terms: Public domain W3C validator