ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rpxrd GIF version

Theorem rpxrd 9819
Description: A positive real is an extended real. (Contributed by Mario Carneiro, 28-May-2016.)
Hypothesis
Ref Expression
rpred.1 (𝜑𝐴 ∈ ℝ+)
Assertion
Ref Expression
rpxrd (𝜑𝐴 ∈ ℝ*)

Proof of Theorem rpxrd
StepHypRef Expression
1 rpred.1 . . 3 (𝜑𝐴 ∈ ℝ+)
21rpred 9818 . 2 (𝜑𝐴 ∈ ℝ)
32rexrd 8122 1 (𝜑𝐴 ∈ ℝ*)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2176  *cxr 8106  +crp 9775
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-rab 2493  df-v 2774  df-un 3170  df-in 3172  df-ss 3179  df-xr 8111  df-rp 9776
This theorem is referenced by:  ssblex  14903  metequiv2  14968  metss2lem  14969  metcnp  14984  metcnpi3  14989
  Copyright terms: Public domain W3C validator