Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > rpxrd | GIF version |
Description: A positive real is an extended real. (Contributed by Mario Carneiro, 28-May-2016.) |
Ref | Expression |
---|---|
rpred.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ+) |
Ref | Expression |
---|---|
rpxrd | ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rpred.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ+) | |
2 | 1 | rpred 9632 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) |
3 | 2 | rexrd 7948 | 1 ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2136 ℝ*cxr 7932 ℝ+crp 9589 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-rab 2453 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-xr 7937 df-rp 9590 |
This theorem is referenced by: ssblex 13071 metequiv2 13136 metss2lem 13137 metcnp 13152 metcnpi3 13157 |
Copyright terms: Public domain | W3C validator |