ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reccn2ap Unicode version

Theorem reccn2ap 11456
Description: The reciprocal function is continuous. The class  T is just for convenience in writing the proof and typically would be passed in as an instance of eqid 2193. (Contributed by Mario Carneiro, 9-Feb-2014.) Using apart, infimum of pair. (Revised by Jim Kingdon, 26-May-2023.)
Hypothesis
Ref Expression
reccn2ap.t  |-  T  =  (inf ( { 1 ,  ( ( abs `  A )  x.  B
) } ,  RR ,  <  )  x.  (
( abs `  A
)  /  2 ) )
Assertion
Ref Expression
reccn2ap  |-  ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  ->  E. y  e.  RR+  A. z  e. 
{ w  e.  CC  |  w #  0 } 
( ( abs `  (
z  -  A ) )  <  y  -> 
( abs `  (
( 1  /  z
)  -  ( 1  /  A ) ) )  <  B ) )
Distinct variable groups:    y, w, z, A    w, B, y, z    y, T, z
Allowed substitution hint:    T( w)

Proof of Theorem reccn2ap
StepHypRef Expression
1 reccn2ap.t . . 3  |-  T  =  (inf ( { 1 ,  ( ( abs `  A )  x.  B
) } ,  RR ,  <  )  x.  (
( abs `  A
)  /  2 ) )
2 1red 8034 . . . . . 6  |-  ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  ->  1  e.  RR )
3 simp1 999 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  ->  A  e.  CC )
4 simp2 1000 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  ->  A #  0 )
53, 4absrpclapd 11332 . . . . . . . 8  |-  ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  ->  ( abs `  A )  e.  RR+ )
6 simp3 1001 . . . . . . . 8  |-  ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  ->  B  e.  RR+ )
75, 6rpmulcld 9779 . . . . . . 7  |-  ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  ->  ( ( abs `  A )  x.  B )  e.  RR+ )
87rpred 9762 . . . . . 6  |-  ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  ->  ( ( abs `  A )  x.  B )  e.  RR )
9 mincl 11374 . . . . . 6  |-  ( ( 1  e.  RR  /\  ( ( abs `  A
)  x.  B )  e.  RR )  -> inf ( { 1 ,  ( ( abs `  A
)  x.  B ) } ,  RR ,  <  )  e.  RR )
102, 8, 9syl2anc 411 . . . . 5  |-  ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  -> inf ( { 1 ,  ( ( abs `  A )  x.  B ) } ,  RR ,  <  )  e.  RR )
117rpgt0d 9765 . . . . . . 7  |-  ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  ->  0  < 
( ( abs `  A
)  x.  B ) )
12 0lt1 8146 . . . . . . 7  |-  0  <  1
1311, 12jctil 312 . . . . . 6  |-  ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  ->  ( 0  <  1  /\  0  <  ( ( abs `  A
)  x.  B ) ) )
14 0red 8020 . . . . . . 7  |-  ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  ->  0  e.  RR )
15 ltmininf 11378 . . . . . . 7  |-  ( ( 0  e.  RR  /\  1  e.  RR  /\  (
( abs `  A
)  x.  B )  e.  RR )  -> 
( 0  < inf ( { 1 ,  ( ( abs `  A
)  x.  B ) } ,  RR ,  <  )  <->  ( 0  <  1  /\  0  < 
( ( abs `  A
)  x.  B ) ) ) )
1614, 2, 8, 15syl3anc 1249 . . . . . 6  |-  ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  ->  ( 0  < inf ( { 1 ,  ( ( abs `  A )  x.  B
) } ,  RR ,  <  )  <->  ( 0  <  1  /\  0  <  ( ( abs `  A
)  x.  B ) ) ) )
1713, 16mpbird 167 . . . . 5  |-  ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  ->  0  < inf ( { 1 ,  ( ( abs `  A
)  x.  B ) } ,  RR ,  <  ) )
1810, 17elrpd 9759 . . . 4  |-  ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  -> inf ( { 1 ,  ( ( abs `  A )  x.  B ) } ,  RR ,  <  )  e.  RR+ )
195rphalfcld 9775 . . . 4  |-  ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  ->  ( ( abs `  A )  /  2 )  e.  RR+ )
2018, 19rpmulcld 9779 . . 3  |-  ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  ->  (inf ( { 1 ,  ( ( abs `  A
)  x.  B ) } ,  RR ,  <  )  x.  ( ( abs `  A )  /  2 ) )  e.  RR+ )
211, 20eqeltrid 2280 . 2  |-  ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  ->  T  e.  RR+ )
223adantr 276 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  A  e.  CC )
23 simprl 529 . . . . . . . . . . 11  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  z  e.  { w  e.  CC  |  w #  0 }
)
24 breq1 4032 . . . . . . . . . . . 12  |-  ( w  =  z  ->  (
w #  0  <->  z #  0
) )
2524elrab 2916 . . . . . . . . . . 11  |-  ( z  e.  { w  e.  CC  |  w #  0 }  <->  ( z  e.  CC  /\  z #  0 ) )
2623, 25sylib 122 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  (
z  e.  CC  /\  z #  0 ) )
2726simpld 112 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  z  e.  CC )
2822, 27mulcld 8040 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  ( A  x.  z )  e.  CC )
294adantr 276 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  A #  0 )
3026simprd 114 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  z #  0 )
3122, 27, 29, 30mulap0d 8677 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  ( A  x.  z ) #  0 )
3222, 27, 28, 31divsubdirapd 8849 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  (
( A  -  z
)  /  ( A  x.  z ) )  =  ( ( A  /  ( A  x.  z ) )  -  ( z  /  ( A  x.  z )
) ) )
3322mulridd 8036 . . . . . . . . . . 11  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  ( A  x.  1 )  =  A )
3433oveq1d 5933 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  (
( A  x.  1 )  /  ( A  x.  z ) )  =  ( A  / 
( A  x.  z
) ) )
35 1cnd 8035 . . . . . . . . . . 11  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  1  e.  CC )
3635, 27, 22, 30, 29divcanap5d 8836 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  (
( A  x.  1 )  /  ( A  x.  z ) )  =  ( 1  / 
z ) )
3734, 36eqtr3d 2228 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  ( A  /  ( A  x.  z ) )  =  ( 1  /  z
) )
3827mulridd 8036 . . . . . . . . . . 11  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  (
z  x.  1 )  =  z )
3927, 22mulcomd 8041 . . . . . . . . . . 11  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  (
z  x.  A )  =  ( A  x.  z ) )
4038, 39oveq12d 5936 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  (
( z  x.  1 )  /  ( z  x.  A ) )  =  ( z  / 
( A  x.  z
) ) )
4135, 22, 27, 29, 30divcanap5d 8836 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  (
( z  x.  1 )  /  ( z  x.  A ) )  =  ( 1  /  A ) )
4240, 41eqtr3d 2228 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  (
z  /  ( A  x.  z ) )  =  ( 1  /  A ) )
4337, 42oveq12d 5936 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  (
( A  /  ( A  x.  z )
)  -  ( z  /  ( A  x.  z ) ) )  =  ( ( 1  /  z )  -  ( 1  /  A
) ) )
4432, 43eqtrd 2226 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  (
( A  -  z
)  /  ( A  x.  z ) )  =  ( ( 1  /  z )  -  ( 1  /  A
) ) )
4544fveq2d 5558 . . . . . 6  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  ( abs `  ( ( A  -  z )  / 
( A  x.  z
) ) )  =  ( abs `  (
( 1  /  z
)  -  ( 1  /  A ) ) ) )
4622, 27subcld 8330 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  ( A  -  z )  e.  CC )
4746, 28, 31absdivapd 11339 . . . . . 6  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  ( abs `  ( ( A  -  z )  / 
( A  x.  z
) ) )  =  ( ( abs `  ( A  -  z )
)  /  ( abs `  ( A  x.  z
) ) ) )
4845, 47eqtr3d 2228 . . . . 5  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  ( abs `  ( ( 1  /  z )  -  ( 1  /  A
) ) )  =  ( ( abs `  ( A  -  z )
)  /  ( abs `  ( A  x.  z
) ) ) )
4946abscld 11325 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  ( abs `  ( A  -  z ) )  e.  RR )
5021adantr 276 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  T  e.  RR+ )
5150rpred 9762 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  T  e.  RR )
5228abscld 11325 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  ( abs `  ( A  x.  z ) )  e.  RR )
536rpred 9762 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  ->  B  e.  RR )
5453adantr 276 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  B  e.  RR )
5552, 54remulcld 8050 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  (
( abs `  ( A  x.  z )
)  x.  B )  e.  RR )
5622, 27abssubd 11337 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  ( abs `  ( A  -  z ) )  =  ( abs `  (
z  -  A ) ) )
57 simprr 531 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  ( abs `  ( z  -  A ) )  < 
T )
5856, 57eqbrtrd 4051 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  ( abs `  ( A  -  z ) )  < 
T )
597adantr 276 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  (
( abs `  A
)  x.  B )  e.  RR+ )
6059rpred 9762 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  (
( abs `  A
)  x.  B )  e.  RR )
6119adantr 276 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  (
( abs `  A
)  /  2 )  e.  RR+ )
6261rpred 9762 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  (
( abs `  A
)  /  2 )  e.  RR )
6360, 62remulcld 8050 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  (
( ( abs `  A
)  x.  B )  x.  ( ( abs `  A )  /  2
) )  e.  RR )
64 1re 8018 . . . . . . . . . . 11  |-  1  e.  RR
65 min2inf 11376 . . . . . . . . . . 11  |-  ( ( 1  e.  RR  /\  ( ( abs `  A
)  x.  B )  e.  RR )  -> inf ( { 1 ,  ( ( abs `  A
)  x.  B ) } ,  RR ,  <  )  <_  ( ( abs `  A )  x.  B ) )
6664, 60, 65sylancr 414 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  -> inf ( { 1 ,  ( ( abs `  A )  x.  B ) } ,  RR ,  <  )  <_  ( ( abs `  A )  x.  B
) )
6710adantr 276 . . . . . . . . . . 11  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  -> inf ( { 1 ,  ( ( abs `  A )  x.  B ) } ,  RR ,  <  )  e.  RR )
6867, 60, 61lemul1d 9806 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  (inf ( { 1 ,  ( ( abs `  A
)  x.  B ) } ,  RR ,  <  )  <_  ( ( abs `  A )  x.  B )  <->  (inf ( { 1 ,  ( ( abs `  A
)  x.  B ) } ,  RR ,  <  )  x.  ( ( abs `  A )  /  2 ) )  <_  ( ( ( abs `  A )  x.  B )  x.  ( ( abs `  A
)  /  2 ) ) ) )
6966, 68mpbid 147 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  (inf ( { 1 ,  ( ( abs `  A
)  x.  B ) } ,  RR ,  <  )  x.  ( ( abs `  A )  /  2 ) )  <_  ( ( ( abs `  A )  x.  B )  x.  ( ( abs `  A
)  /  2 ) ) )
701, 69eqbrtrid 4064 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  T  <_  ( ( ( abs `  A )  x.  B
)  x.  ( ( abs `  A )  /  2 ) ) )
7127abscld 11325 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  ( abs `  z )  e.  RR )
7222abscld 11325 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  ( abs `  A )  e.  RR )
7372recnd 8048 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  ( abs `  A )  e.  CC )
74732halvesd 9228 . . . . . . . . . . . 12  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  (
( ( abs `  A
)  /  2 )  +  ( ( abs `  A )  /  2
) )  =  ( abs `  A ) )
7572, 71resubcld 8400 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  (
( abs `  A
)  -  ( abs `  z ) )  e.  RR )
7627, 22subcld 8330 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  (
z  -  A )  e.  CC )
7776abscld 11325 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  ( abs `  ( z  -  A ) )  e.  RR )
7856, 77eqeltrd 2270 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  ( abs `  ( A  -  z ) )  e.  RR )
7922, 27abs2difd 11341 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  (
( abs `  A
)  -  ( abs `  z ) )  <_ 
( abs `  ( A  -  z )
) )
80 min1inf 11375 . . . . . . . . . . . . . . . . . . 19  |-  ( ( 1  e.  RR  /\  ( ( abs `  A
)  x.  B )  e.  RR )  -> inf ( { 1 ,  ( ( abs `  A
)  x.  B ) } ,  RR ,  <  )  <_  1 )
8164, 60, 80sylancr 414 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  -> inf ( { 1 ,  ( ( abs `  A )  x.  B ) } ,  RR ,  <  )  <_  1 )
82 1red 8034 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  1  e.  RR )
8367, 82, 61lemul1d 9806 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  (inf ( { 1 ,  ( ( abs `  A
)  x.  B ) } ,  RR ,  <  )  <_  1  <->  (inf ( { 1 ,  ( ( abs `  A
)  x.  B ) } ,  RR ,  <  )  x.  ( ( abs `  A )  /  2 ) )  <_  ( 1  x.  ( ( abs `  A
)  /  2 ) ) ) )
8481, 83mpbid 147 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  (inf ( { 1 ,  ( ( abs `  A
)  x.  B ) } ,  RR ,  <  )  x.  ( ( abs `  A )  /  2 ) )  <_  ( 1  x.  ( ( abs `  A
)  /  2 ) ) )
851, 84eqbrtrid 4064 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  T  <_  ( 1  x.  (
( abs `  A
)  /  2 ) ) )
8662recnd 8048 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  (
( abs `  A
)  /  2 )  e.  CC )
8786mulid2d 8038 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  (
1  x.  ( ( abs `  A )  /  2 ) )  =  ( ( abs `  A )  /  2
) )
8885, 87breqtrd 4055 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  T  <_  ( ( abs `  A
)  /  2 ) )
8978, 51, 62, 58, 88ltletrd 8442 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  ( abs `  ( A  -  z ) )  < 
( ( abs `  A
)  /  2 ) )
9075, 78, 62, 79, 89lelttrd 8144 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  (
( abs `  A
)  -  ( abs `  z ) )  < 
( ( abs `  A
)  /  2 ) )
9172, 71, 62ltsubadd2d 8562 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  (
( ( abs `  A
)  -  ( abs `  z ) )  < 
( ( abs `  A
)  /  2 )  <-> 
( abs `  A
)  <  ( ( abs `  z )  +  ( ( abs `  A
)  /  2 ) ) ) )
9290, 91mpbid 147 . . . . . . . . . . . 12  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  ( abs `  A )  < 
( ( abs `  z
)  +  ( ( abs `  A )  /  2 ) ) )
9374, 92eqbrtrd 4051 . . . . . . . . . . 11  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  (
( ( abs `  A
)  /  2 )  +  ( ( abs `  A )  /  2
) )  <  (
( abs `  z
)  +  ( ( abs `  A )  /  2 ) ) )
9462, 71, 62ltadd1d 8557 . . . . . . . . . . 11  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  (
( ( abs `  A
)  /  2 )  <  ( abs `  z
)  <->  ( ( ( abs `  A )  /  2 )  +  ( ( abs `  A
)  /  2 ) )  <  ( ( abs `  z )  +  ( ( abs `  A )  /  2
) ) ) )
9593, 94mpbird 167 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  (
( abs `  A
)  /  2 )  <  ( abs `  z
) )
9662, 71, 59, 95ltmul2dd 9819 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  (
( ( abs `  A
)  x.  B )  x.  ( ( abs `  A )  /  2
) )  <  (
( ( abs `  A
)  x.  B )  x.  ( abs `  z
) ) )
9722, 27absmuld 11338 . . . . . . . . . . 11  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  ( abs `  ( A  x.  z ) )  =  ( ( abs `  A
)  x.  ( abs `  z ) ) )
9897oveq1d 5933 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  (
( abs `  ( A  x.  z )
)  x.  B )  =  ( ( ( abs `  A )  x.  ( abs `  z
) )  x.  B
) )
9971recnd 8048 . . . . . . . . . . 11  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  ( abs `  z )  e.  CC )
10054recnd 8048 . . . . . . . . . . 11  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  B  e.  CC )
10173, 99, 100mul32d 8172 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  (
( ( abs `  A
)  x.  ( abs `  z ) )  x.  B )  =  ( ( ( abs `  A
)  x.  B )  x.  ( abs `  z
) ) )
10298, 101eqtrd 2226 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  (
( abs `  ( A  x.  z )
)  x.  B )  =  ( ( ( abs `  A )  x.  B )  x.  ( abs `  z
) ) )
10396, 102breqtrrd 4057 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  (
( ( abs `  A
)  x.  B )  x.  ( ( abs `  A )  /  2
) )  <  (
( abs `  ( A  x.  z )
)  x.  B ) )
10451, 63, 55, 70, 103lelttrd 8144 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  T  <  ( ( abs `  ( A  x.  z )
)  x.  B ) )
10549, 51, 55, 58, 104lttrd 8145 . . . . . 6  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  ( abs `  ( A  -  z ) )  < 
( ( abs `  ( A  x.  z )
)  x.  B ) )
10628, 31absrpclapd 11332 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  ( abs `  ( A  x.  z ) )  e.  RR+ )
10749, 54, 106ltdivmuld 9814 . . . . . 6  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  (
( ( abs `  ( A  -  z )
)  /  ( abs `  ( A  x.  z
) ) )  < 
B  <->  ( abs `  ( A  -  z )
)  <  ( ( abs `  ( A  x.  z ) )  x.  B ) ) )
108105, 107mpbird 167 . . . . 5  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  (
( abs `  ( A  -  z )
)  /  ( abs `  ( A  x.  z
) ) )  < 
B )
10948, 108eqbrtrd 4051 . . . 4  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  ( abs `  ( ( 1  /  z )  -  ( 1  /  A
) ) )  < 
B )
110109expr 375 . . 3  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  z  e.  { w  e.  CC  |  w #  0 }
)  ->  ( ( abs `  ( z  -  A ) )  < 
T  ->  ( abs `  ( ( 1  / 
z )  -  (
1  /  A ) ) )  <  B
) )
111110ralrimiva 2567 . 2  |-  ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  ->  A. z  e.  { w  e.  CC  |  w #  0 } 
( ( abs `  (
z  -  A ) )  <  T  -> 
( abs `  (
( 1  /  z
)  -  ( 1  /  A ) ) )  <  B ) )
112 breq2 4033 . . 3  |-  ( y  =  T  ->  (
( abs `  (
z  -  A ) )  <  y  <->  ( abs `  ( z  -  A
) )  <  T
) )
113112rspceaimv 2872 . 2  |-  ( ( T  e.  RR+  /\  A. z  e.  { w  e.  CC  |  w #  0 }  ( ( abs `  ( z  -  A
) )  <  T  ->  ( abs `  (
( 1  /  z
)  -  ( 1  /  A ) ) )  <  B ) )  ->  E. y  e.  RR+  A. z  e. 
{ w  e.  CC  |  w #  0 } 
( ( abs `  (
z  -  A ) )  <  y  -> 
( abs `  (
( 1  /  z
)  -  ( 1  /  A ) ) )  <  B ) )
11421, 111, 113syl2anc 411 1  |-  ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  ->  E. y  e.  RR+  A. z  e. 
{ w  e.  CC  |  w #  0 } 
( ( abs `  (
z  -  A ) )  <  y  -> 
( abs `  (
( 1  /  z
)  -  ( 1  /  A ) ) )  <  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1364    e. wcel 2164   A.wral 2472   E.wrex 2473   {crab 2476   {cpr 3619   class class class wbr 4029   ` cfv 5254  (class class class)co 5918  infcinf 7042   CCcc 7870   RRcr 7871   0cc0 7872   1c1 7873    + caddc 7875    x. cmul 7877    < clt 8054    <_ cle 8055    - cmin 8190   # cap 8600    / cdiv 8691   2c2 9033   RR+crp 9719   abscabs 11141
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-mulrcl 7971  ax-addcom 7972  ax-mulcom 7973  ax-addass 7974  ax-mulass 7975  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-1rid 7979  ax-0id 7980  ax-rnegex 7981  ax-precex 7982  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988  ax-pre-mulgt0 7989  ax-pre-mulext 7990  ax-arch 7991  ax-caucvg 7992
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-po 4327  df-iso 4328  df-iord 4397  df-on 4399  df-ilim 4400  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-isom 5263  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-frec 6444  df-sup 7043  df-inf 7044  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-reap 8594  df-ap 8601  df-div 8692  df-inn 8983  df-2 9041  df-3 9042  df-4 9043  df-n0 9241  df-z 9318  df-uz 9593  df-rp 9720  df-seqfrec 10519  df-exp 10610  df-cj 10986  df-re 10987  df-im 10988  df-rsqrt 11142  df-abs 11143
This theorem is referenced by:  divcnap  14723  cdivcncfap  14758
  Copyright terms: Public domain W3C validator