ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reccn2ap Unicode version

Theorem reccn2ap 11305
Description: The reciprocal function is continuous. The class  T is just for convenience in writing the proof and typically would be passed in as an instance of eqid 2177. (Contributed by Mario Carneiro, 9-Feb-2014.) Using apart, infimum of pair. (Revised by Jim Kingdon, 26-May-2023.)
Hypothesis
Ref Expression
reccn2ap.t  |-  T  =  (inf ( { 1 ,  ( ( abs `  A )  x.  B
) } ,  RR ,  <  )  x.  (
( abs `  A
)  /  2 ) )
Assertion
Ref Expression
reccn2ap  |-  ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  ->  E. y  e.  RR+  A. z  e. 
{ w  e.  CC  |  w #  0 } 
( ( abs `  (
z  -  A ) )  <  y  -> 
( abs `  (
( 1  /  z
)  -  ( 1  /  A ) ) )  <  B ) )
Distinct variable groups:    y, w, z, A    w, B, y, z    y, T, z
Allowed substitution hint:    T( w)

Proof of Theorem reccn2ap
StepHypRef Expression
1 reccn2ap.t . . 3  |-  T  =  (inf ( { 1 ,  ( ( abs `  A )  x.  B
) } ,  RR ,  <  )  x.  (
( abs `  A
)  /  2 ) )
2 1red 7963 . . . . . 6  |-  ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  ->  1  e.  RR )
3 simp1 997 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  ->  A  e.  CC )
4 simp2 998 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  ->  A #  0 )
53, 4absrpclapd 11181 . . . . . . . 8  |-  ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  ->  ( abs `  A )  e.  RR+ )
6 simp3 999 . . . . . . . 8  |-  ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  ->  B  e.  RR+ )
75, 6rpmulcld 9700 . . . . . . 7  |-  ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  ->  ( ( abs `  A )  x.  B )  e.  RR+ )
87rpred 9683 . . . . . 6  |-  ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  ->  ( ( abs `  A )  x.  B )  e.  RR )
9 mincl 11223 . . . . . 6  |-  ( ( 1  e.  RR  /\  ( ( abs `  A
)  x.  B )  e.  RR )  -> inf ( { 1 ,  ( ( abs `  A
)  x.  B ) } ,  RR ,  <  )  e.  RR )
102, 8, 9syl2anc 411 . . . . 5  |-  ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  -> inf ( { 1 ,  ( ( abs `  A )  x.  B ) } ,  RR ,  <  )  e.  RR )
117rpgt0d 9686 . . . . . . 7  |-  ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  ->  0  < 
( ( abs `  A
)  x.  B ) )
12 0lt1 8074 . . . . . . 7  |-  0  <  1
1311, 12jctil 312 . . . . . 6  |-  ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  ->  ( 0  <  1  /\  0  <  ( ( abs `  A
)  x.  B ) ) )
14 0red 7949 . . . . . . 7  |-  ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  ->  0  e.  RR )
15 ltmininf 11227 . . . . . . 7  |-  ( ( 0  e.  RR  /\  1  e.  RR  /\  (
( abs `  A
)  x.  B )  e.  RR )  -> 
( 0  < inf ( { 1 ,  ( ( abs `  A
)  x.  B ) } ,  RR ,  <  )  <->  ( 0  <  1  /\  0  < 
( ( abs `  A
)  x.  B ) ) ) )
1614, 2, 8, 15syl3anc 1238 . . . . . 6  |-  ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  ->  ( 0  < inf ( { 1 ,  ( ( abs `  A )  x.  B
) } ,  RR ,  <  )  <->  ( 0  <  1  /\  0  <  ( ( abs `  A
)  x.  B ) ) ) )
1713, 16mpbird 167 . . . . 5  |-  ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  ->  0  < inf ( { 1 ,  ( ( abs `  A
)  x.  B ) } ,  RR ,  <  ) )
1810, 17elrpd 9680 . . . 4  |-  ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  -> inf ( { 1 ,  ( ( abs `  A )  x.  B ) } ,  RR ,  <  )  e.  RR+ )
195rphalfcld 9696 . . . 4  |-  ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  ->  ( ( abs `  A )  /  2 )  e.  RR+ )
2018, 19rpmulcld 9700 . . 3  |-  ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  ->  (inf ( { 1 ,  ( ( abs `  A
)  x.  B ) } ,  RR ,  <  )  x.  ( ( abs `  A )  /  2 ) )  e.  RR+ )
211, 20eqeltrid 2264 . 2  |-  ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  ->  T  e.  RR+ )
223adantr 276 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  A  e.  CC )
23 simprl 529 . . . . . . . . . . 11  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  z  e.  { w  e.  CC  |  w #  0 }
)
24 breq1 4003 . . . . . . . . . . . 12  |-  ( w  =  z  ->  (
w #  0  <->  z #  0
) )
2524elrab 2893 . . . . . . . . . . 11  |-  ( z  e.  { w  e.  CC  |  w #  0 }  <->  ( z  e.  CC  /\  z #  0 ) )
2623, 25sylib 122 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  (
z  e.  CC  /\  z #  0 ) )
2726simpld 112 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  z  e.  CC )
2822, 27mulcld 7968 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  ( A  x.  z )  e.  CC )
294adantr 276 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  A #  0 )
3026simprd 114 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  z #  0 )
3122, 27, 29, 30mulap0d 8604 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  ( A  x.  z ) #  0 )
3222, 27, 28, 31divsubdirapd 8776 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  (
( A  -  z
)  /  ( A  x.  z ) )  =  ( ( A  /  ( A  x.  z ) )  -  ( z  /  ( A  x.  z )
) ) )
3322mulid1d 7965 . . . . . . . . . . 11  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  ( A  x.  1 )  =  A )
3433oveq1d 5884 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  (
( A  x.  1 )  /  ( A  x.  z ) )  =  ( A  / 
( A  x.  z
) ) )
35 1cnd 7964 . . . . . . . . . . 11  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  1  e.  CC )
3635, 27, 22, 30, 29divcanap5d 8763 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  (
( A  x.  1 )  /  ( A  x.  z ) )  =  ( 1  / 
z ) )
3734, 36eqtr3d 2212 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  ( A  /  ( A  x.  z ) )  =  ( 1  /  z
) )
3827mulid1d 7965 . . . . . . . . . . 11  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  (
z  x.  1 )  =  z )
3927, 22mulcomd 7969 . . . . . . . . . . 11  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  (
z  x.  A )  =  ( A  x.  z ) )
4038, 39oveq12d 5887 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  (
( z  x.  1 )  /  ( z  x.  A ) )  =  ( z  / 
( A  x.  z
) ) )
4135, 22, 27, 29, 30divcanap5d 8763 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  (
( z  x.  1 )  /  ( z  x.  A ) )  =  ( 1  /  A ) )
4240, 41eqtr3d 2212 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  (
z  /  ( A  x.  z ) )  =  ( 1  /  A ) )
4337, 42oveq12d 5887 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  (
( A  /  ( A  x.  z )
)  -  ( z  /  ( A  x.  z ) ) )  =  ( ( 1  /  z )  -  ( 1  /  A
) ) )
4432, 43eqtrd 2210 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  (
( A  -  z
)  /  ( A  x.  z ) )  =  ( ( 1  /  z )  -  ( 1  /  A
) ) )
4544fveq2d 5515 . . . . . 6  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  ( abs `  ( ( A  -  z )  / 
( A  x.  z
) ) )  =  ( abs `  (
( 1  /  z
)  -  ( 1  /  A ) ) ) )
4622, 27subcld 8258 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  ( A  -  z )  e.  CC )
4746, 28, 31absdivapd 11188 . . . . . 6  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  ( abs `  ( ( A  -  z )  / 
( A  x.  z
) ) )  =  ( ( abs `  ( A  -  z )
)  /  ( abs `  ( A  x.  z
) ) ) )
4845, 47eqtr3d 2212 . . . . 5  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  ( abs `  ( ( 1  /  z )  -  ( 1  /  A
) ) )  =  ( ( abs `  ( A  -  z )
)  /  ( abs `  ( A  x.  z
) ) ) )
4946abscld 11174 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  ( abs `  ( A  -  z ) )  e.  RR )
5021adantr 276 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  T  e.  RR+ )
5150rpred 9683 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  T  e.  RR )
5228abscld 11174 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  ( abs `  ( A  x.  z ) )  e.  RR )
536rpred 9683 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  ->  B  e.  RR )
5453adantr 276 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  B  e.  RR )
5552, 54remulcld 7978 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  (
( abs `  ( A  x.  z )
)  x.  B )  e.  RR )
5622, 27abssubd 11186 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  ( abs `  ( A  -  z ) )  =  ( abs `  (
z  -  A ) ) )
57 simprr 531 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  ( abs `  ( z  -  A ) )  < 
T )
5856, 57eqbrtrd 4022 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  ( abs `  ( A  -  z ) )  < 
T )
597adantr 276 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  (
( abs `  A
)  x.  B )  e.  RR+ )
6059rpred 9683 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  (
( abs `  A
)  x.  B )  e.  RR )
6119adantr 276 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  (
( abs `  A
)  /  2 )  e.  RR+ )
6261rpred 9683 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  (
( abs `  A
)  /  2 )  e.  RR )
6360, 62remulcld 7978 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  (
( ( abs `  A
)  x.  B )  x.  ( ( abs `  A )  /  2
) )  e.  RR )
64 1re 7947 . . . . . . . . . . 11  |-  1  e.  RR
65 min2inf 11225 . . . . . . . . . . 11  |-  ( ( 1  e.  RR  /\  ( ( abs `  A
)  x.  B )  e.  RR )  -> inf ( { 1 ,  ( ( abs `  A
)  x.  B ) } ,  RR ,  <  )  <_  ( ( abs `  A )  x.  B ) )
6664, 60, 65sylancr 414 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  -> inf ( { 1 ,  ( ( abs `  A )  x.  B ) } ,  RR ,  <  )  <_  ( ( abs `  A )  x.  B
) )
6710adantr 276 . . . . . . . . . . 11  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  -> inf ( { 1 ,  ( ( abs `  A )  x.  B ) } ,  RR ,  <  )  e.  RR )
6867, 60, 61lemul1d 9727 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  (inf ( { 1 ,  ( ( abs `  A
)  x.  B ) } ,  RR ,  <  )  <_  ( ( abs `  A )  x.  B )  <->  (inf ( { 1 ,  ( ( abs `  A
)  x.  B ) } ,  RR ,  <  )  x.  ( ( abs `  A )  /  2 ) )  <_  ( ( ( abs `  A )  x.  B )  x.  ( ( abs `  A
)  /  2 ) ) ) )
6966, 68mpbid 147 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  (inf ( { 1 ,  ( ( abs `  A
)  x.  B ) } ,  RR ,  <  )  x.  ( ( abs `  A )  /  2 ) )  <_  ( ( ( abs `  A )  x.  B )  x.  ( ( abs `  A
)  /  2 ) ) )
701, 69eqbrtrid 4035 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  T  <_  ( ( ( abs `  A )  x.  B
)  x.  ( ( abs `  A )  /  2 ) ) )
7127abscld 11174 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  ( abs `  z )  e.  RR )
7222abscld 11174 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  ( abs `  A )  e.  RR )
7372recnd 7976 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  ( abs `  A )  e.  CC )
74732halvesd 9153 . . . . . . . . . . . 12  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  (
( ( abs `  A
)  /  2 )  +  ( ( abs `  A )  /  2
) )  =  ( abs `  A ) )
7572, 71resubcld 8328 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  (
( abs `  A
)  -  ( abs `  z ) )  e.  RR )
7627, 22subcld 8258 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  (
z  -  A )  e.  CC )
7776abscld 11174 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  ( abs `  ( z  -  A ) )  e.  RR )
7856, 77eqeltrd 2254 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  ( abs `  ( A  -  z ) )  e.  RR )
7922, 27abs2difd 11190 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  (
( abs `  A
)  -  ( abs `  z ) )  <_ 
( abs `  ( A  -  z )
) )
80 min1inf 11224 . . . . . . . . . . . . . . . . . . 19  |-  ( ( 1  e.  RR  /\  ( ( abs `  A
)  x.  B )  e.  RR )  -> inf ( { 1 ,  ( ( abs `  A
)  x.  B ) } ,  RR ,  <  )  <_  1 )
8164, 60, 80sylancr 414 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  -> inf ( { 1 ,  ( ( abs `  A )  x.  B ) } ,  RR ,  <  )  <_  1 )
82 1red 7963 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  1  e.  RR )
8367, 82, 61lemul1d 9727 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  (inf ( { 1 ,  ( ( abs `  A
)  x.  B ) } ,  RR ,  <  )  <_  1  <->  (inf ( { 1 ,  ( ( abs `  A
)  x.  B ) } ,  RR ,  <  )  x.  ( ( abs `  A )  /  2 ) )  <_  ( 1  x.  ( ( abs `  A
)  /  2 ) ) ) )
8481, 83mpbid 147 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  (inf ( { 1 ,  ( ( abs `  A
)  x.  B ) } ,  RR ,  <  )  x.  ( ( abs `  A )  /  2 ) )  <_  ( 1  x.  ( ( abs `  A
)  /  2 ) ) )
851, 84eqbrtrid 4035 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  T  <_  ( 1  x.  (
( abs `  A
)  /  2 ) ) )
8662recnd 7976 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  (
( abs `  A
)  /  2 )  e.  CC )
8786mulid2d 7966 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  (
1  x.  ( ( abs `  A )  /  2 ) )  =  ( ( abs `  A )  /  2
) )
8885, 87breqtrd 4026 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  T  <_  ( ( abs `  A
)  /  2 ) )
8978, 51, 62, 58, 88ltletrd 8370 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  ( abs `  ( A  -  z ) )  < 
( ( abs `  A
)  /  2 ) )
9075, 78, 62, 79, 89lelttrd 8072 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  (
( abs `  A
)  -  ( abs `  z ) )  < 
( ( abs `  A
)  /  2 ) )
9172, 71, 62ltsubadd2d 8490 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  (
( ( abs `  A
)  -  ( abs `  z ) )  < 
( ( abs `  A
)  /  2 )  <-> 
( abs `  A
)  <  ( ( abs `  z )  +  ( ( abs `  A
)  /  2 ) ) ) )
9290, 91mpbid 147 . . . . . . . . . . . 12  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  ( abs `  A )  < 
( ( abs `  z
)  +  ( ( abs `  A )  /  2 ) ) )
9374, 92eqbrtrd 4022 . . . . . . . . . . 11  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  (
( ( abs `  A
)  /  2 )  +  ( ( abs `  A )  /  2
) )  <  (
( abs `  z
)  +  ( ( abs `  A )  /  2 ) ) )
9462, 71, 62ltadd1d 8485 . . . . . . . . . . 11  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  (
( ( abs `  A
)  /  2 )  <  ( abs `  z
)  <->  ( ( ( abs `  A )  /  2 )  +  ( ( abs `  A
)  /  2 ) )  <  ( ( abs `  z )  +  ( ( abs `  A )  /  2
) ) ) )
9593, 94mpbird 167 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  (
( abs `  A
)  /  2 )  <  ( abs `  z
) )
9662, 71, 59, 95ltmul2dd 9740 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  (
( ( abs `  A
)  x.  B )  x.  ( ( abs `  A )  /  2
) )  <  (
( ( abs `  A
)  x.  B )  x.  ( abs `  z
) ) )
9722, 27absmuld 11187 . . . . . . . . . . 11  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  ( abs `  ( A  x.  z ) )  =  ( ( abs `  A
)  x.  ( abs `  z ) ) )
9897oveq1d 5884 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  (
( abs `  ( A  x.  z )
)  x.  B )  =  ( ( ( abs `  A )  x.  ( abs `  z
) )  x.  B
) )
9971recnd 7976 . . . . . . . . . . 11  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  ( abs `  z )  e.  CC )
10054recnd 7976 . . . . . . . . . . 11  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  B  e.  CC )
10173, 99, 100mul32d 8100 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  (
( ( abs `  A
)  x.  ( abs `  z ) )  x.  B )  =  ( ( ( abs `  A
)  x.  B )  x.  ( abs `  z
) ) )
10298, 101eqtrd 2210 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  (
( abs `  ( A  x.  z )
)  x.  B )  =  ( ( ( abs `  A )  x.  B )  x.  ( abs `  z
) ) )
10396, 102breqtrrd 4028 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  (
( ( abs `  A
)  x.  B )  x.  ( ( abs `  A )  /  2
) )  <  (
( abs `  ( A  x.  z )
)  x.  B ) )
10451, 63, 55, 70, 103lelttrd 8072 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  T  <  ( ( abs `  ( A  x.  z )
)  x.  B ) )
10549, 51, 55, 58, 104lttrd 8073 . . . . . 6  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  ( abs `  ( A  -  z ) )  < 
( ( abs `  ( A  x.  z )
)  x.  B ) )
10628, 31absrpclapd 11181 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  ( abs `  ( A  x.  z ) )  e.  RR+ )
10749, 54, 106ltdivmuld 9735 . . . . . 6  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  (
( ( abs `  ( A  -  z )
)  /  ( abs `  ( A  x.  z
) ) )  < 
B  <->  ( abs `  ( A  -  z )
)  <  ( ( abs `  ( A  x.  z ) )  x.  B ) ) )
108105, 107mpbird 167 . . . . 5  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  (
( abs `  ( A  -  z )
)  /  ( abs `  ( A  x.  z
) ) )  < 
B )
10948, 108eqbrtrd 4022 . . . 4  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  ( abs `  ( ( 1  /  z )  -  ( 1  /  A
) ) )  < 
B )
110109expr 375 . . 3  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  z  e.  { w  e.  CC  |  w #  0 }
)  ->  ( ( abs `  ( z  -  A ) )  < 
T  ->  ( abs `  ( ( 1  / 
z )  -  (
1  /  A ) ) )  <  B
) )
111110ralrimiva 2550 . 2  |-  ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  ->  A. z  e.  { w  e.  CC  |  w #  0 } 
( ( abs `  (
z  -  A ) )  <  T  -> 
( abs `  (
( 1  /  z
)  -  ( 1  /  A ) ) )  <  B ) )
112 breq2 4004 . . 3  |-  ( y  =  T  ->  (
( abs `  (
z  -  A ) )  <  y  <->  ( abs `  ( z  -  A
) )  <  T
) )
113112rspceaimv 2849 . 2  |-  ( ( T  e.  RR+  /\  A. z  e.  { w  e.  CC  |  w #  0 }  ( ( abs `  ( z  -  A
) )  <  T  ->  ( abs `  (
( 1  /  z
)  -  ( 1  /  A ) ) )  <  B ) )  ->  E. y  e.  RR+  A. z  e. 
{ w  e.  CC  |  w #  0 } 
( ( abs `  (
z  -  A ) )  <  y  -> 
( abs `  (
( 1  /  z
)  -  ( 1  /  A ) ) )  <  B ) )
11421, 111, 113syl2anc 411 1  |-  ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  ->  E. y  e.  RR+  A. z  e. 
{ w  e.  CC  |  w #  0 } 
( ( abs `  (
z  -  A ) )  <  y  -> 
( abs `  (
( 1  /  z
)  -  ( 1  /  A ) ) )  <  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 978    = wceq 1353    e. wcel 2148   A.wral 2455   E.wrex 2456   {crab 2459   {cpr 3592   class class class wbr 4000   ` cfv 5212  (class class class)co 5869  infcinf 6976   CCcc 7800   RRcr 7801   0cc0 7802   1c1 7803    + caddc 7805    x. cmul 7807    < clt 7982    <_ cle 7983    - cmin 8118   # cap 8528    / cdiv 8618   2c2 8959   RR+crp 9640   abscabs 10990
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4115  ax-sep 4118  ax-nul 4126  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-iinf 4584  ax-cnex 7893  ax-resscn 7894  ax-1cn 7895  ax-1re 7896  ax-icn 7897  ax-addcl 7898  ax-addrcl 7899  ax-mulcl 7900  ax-mulrcl 7901  ax-addcom 7902  ax-mulcom 7903  ax-addass 7904  ax-mulass 7905  ax-distr 7906  ax-i2m1 7907  ax-0lt1 7908  ax-1rid 7909  ax-0id 7910  ax-rnegex 7911  ax-precex 7912  ax-cnre 7913  ax-pre-ltirr 7914  ax-pre-ltwlin 7915  ax-pre-lttrn 7916  ax-pre-apti 7917  ax-pre-ltadd 7918  ax-pre-mulgt0 7919  ax-pre-mulext 7920  ax-arch 7921  ax-caucvg 7922
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-if 3535  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-iun 3886  df-br 4001  df-opab 4062  df-mpt 4063  df-tr 4099  df-id 4290  df-po 4293  df-iso 4294  df-iord 4363  df-on 4365  df-ilim 4366  df-suc 4368  df-iom 4587  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-f1 5217  df-fo 5218  df-f1o 5219  df-fv 5220  df-isom 5221  df-riota 5825  df-ov 5872  df-oprab 5873  df-mpo 5874  df-1st 6135  df-2nd 6136  df-recs 6300  df-frec 6386  df-sup 6977  df-inf 6978  df-pnf 7984  df-mnf 7985  df-xr 7986  df-ltxr 7987  df-le 7988  df-sub 8120  df-neg 8121  df-reap 8522  df-ap 8529  df-div 8619  df-inn 8909  df-2 8967  df-3 8968  df-4 8969  df-n0 9166  df-z 9243  df-uz 9518  df-rp 9641  df-seqfrec 10432  df-exp 10506  df-cj 10835  df-re 10836  df-im 10837  df-rsqrt 10991  df-abs 10992
This theorem is referenced by:  divcnap  13722  cdivcncfap  13754
  Copyright terms: Public domain W3C validator