ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reccn2ap Unicode version

Theorem reccn2ap 11624
Description: The reciprocal function is continuous. The class  T is just for convenience in writing the proof and typically would be passed in as an instance of eqid 2205. (Contributed by Mario Carneiro, 9-Feb-2014.) Using apart, infimum of pair. (Revised by Jim Kingdon, 26-May-2023.)
Hypothesis
Ref Expression
reccn2ap.t  |-  T  =  (inf ( { 1 ,  ( ( abs `  A )  x.  B
) } ,  RR ,  <  )  x.  (
( abs `  A
)  /  2 ) )
Assertion
Ref Expression
reccn2ap  |-  ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  ->  E. y  e.  RR+  A. z  e. 
{ w  e.  CC  |  w #  0 } 
( ( abs `  (
z  -  A ) )  <  y  -> 
( abs `  (
( 1  /  z
)  -  ( 1  /  A ) ) )  <  B ) )
Distinct variable groups:    y, w, z, A    w, B, y, z    y, T, z
Allowed substitution hint:    T( w)

Proof of Theorem reccn2ap
StepHypRef Expression
1 reccn2ap.t . . 3  |-  T  =  (inf ( { 1 ,  ( ( abs `  A )  x.  B
) } ,  RR ,  <  )  x.  (
( abs `  A
)  /  2 ) )
2 1red 8087 . . . . . 6  |-  ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  ->  1  e.  RR )
3 simp1 1000 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  ->  A  e.  CC )
4 simp2 1001 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  ->  A #  0 )
53, 4absrpclapd 11499 . . . . . . . 8  |-  ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  ->  ( abs `  A )  e.  RR+ )
6 simp3 1002 . . . . . . . 8  |-  ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  ->  B  e.  RR+ )
75, 6rpmulcld 9835 . . . . . . 7  |-  ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  ->  ( ( abs `  A )  x.  B )  e.  RR+ )
87rpred 9818 . . . . . 6  |-  ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  ->  ( ( abs `  A )  x.  B )  e.  RR )
9 mincl 11542 . . . . . 6  |-  ( ( 1  e.  RR  /\  ( ( abs `  A
)  x.  B )  e.  RR )  -> inf ( { 1 ,  ( ( abs `  A
)  x.  B ) } ,  RR ,  <  )  e.  RR )
102, 8, 9syl2anc 411 . . . . 5  |-  ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  -> inf ( { 1 ,  ( ( abs `  A )  x.  B ) } ,  RR ,  <  )  e.  RR )
117rpgt0d 9821 . . . . . . 7  |-  ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  ->  0  < 
( ( abs `  A
)  x.  B ) )
12 0lt1 8199 . . . . . . 7  |-  0  <  1
1311, 12jctil 312 . . . . . 6  |-  ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  ->  ( 0  <  1  /\  0  <  ( ( abs `  A
)  x.  B ) ) )
14 0red 8073 . . . . . . 7  |-  ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  ->  0  e.  RR )
15 ltmininf 11546 . . . . . . 7  |-  ( ( 0  e.  RR  /\  1  e.  RR  /\  (
( abs `  A
)  x.  B )  e.  RR )  -> 
( 0  < inf ( { 1 ,  ( ( abs `  A
)  x.  B ) } ,  RR ,  <  )  <->  ( 0  <  1  /\  0  < 
( ( abs `  A
)  x.  B ) ) ) )
1614, 2, 8, 15syl3anc 1250 . . . . . 6  |-  ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  ->  ( 0  < inf ( { 1 ,  ( ( abs `  A )  x.  B
) } ,  RR ,  <  )  <->  ( 0  <  1  /\  0  <  ( ( abs `  A
)  x.  B ) ) ) )
1713, 16mpbird 167 . . . . 5  |-  ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  ->  0  < inf ( { 1 ,  ( ( abs `  A
)  x.  B ) } ,  RR ,  <  ) )
1810, 17elrpd 9815 . . . 4  |-  ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  -> inf ( { 1 ,  ( ( abs `  A )  x.  B ) } ,  RR ,  <  )  e.  RR+ )
195rphalfcld 9831 . . . 4  |-  ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  ->  ( ( abs `  A )  /  2 )  e.  RR+ )
2018, 19rpmulcld 9835 . . 3  |-  ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  ->  (inf ( { 1 ,  ( ( abs `  A
)  x.  B ) } ,  RR ,  <  )  x.  ( ( abs `  A )  /  2 ) )  e.  RR+ )
211, 20eqeltrid 2292 . 2  |-  ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  ->  T  e.  RR+ )
223adantr 276 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  A  e.  CC )
23 simprl 529 . . . . . . . . . . 11  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  z  e.  { w  e.  CC  |  w #  0 }
)
24 breq1 4047 . . . . . . . . . . . 12  |-  ( w  =  z  ->  (
w #  0  <->  z #  0
) )
2524elrab 2929 . . . . . . . . . . 11  |-  ( z  e.  { w  e.  CC  |  w #  0 }  <->  ( z  e.  CC  /\  z #  0 ) )
2623, 25sylib 122 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  (
z  e.  CC  /\  z #  0 ) )
2726simpld 112 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  z  e.  CC )
2822, 27mulcld 8093 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  ( A  x.  z )  e.  CC )
294adantr 276 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  A #  0 )
3026simprd 114 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  z #  0 )
3122, 27, 29, 30mulap0d 8731 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  ( A  x.  z ) #  0 )
3222, 27, 28, 31divsubdirapd 8903 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  (
( A  -  z
)  /  ( A  x.  z ) )  =  ( ( A  /  ( A  x.  z ) )  -  ( z  /  ( A  x.  z )
) ) )
3322mulridd 8089 . . . . . . . . . . 11  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  ( A  x.  1 )  =  A )
3433oveq1d 5959 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  (
( A  x.  1 )  /  ( A  x.  z ) )  =  ( A  / 
( A  x.  z
) ) )
35 1cnd 8088 . . . . . . . . . . 11  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  1  e.  CC )
3635, 27, 22, 30, 29divcanap5d 8890 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  (
( A  x.  1 )  /  ( A  x.  z ) )  =  ( 1  / 
z ) )
3734, 36eqtr3d 2240 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  ( A  /  ( A  x.  z ) )  =  ( 1  /  z
) )
3827mulridd 8089 . . . . . . . . . . 11  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  (
z  x.  1 )  =  z )
3927, 22mulcomd 8094 . . . . . . . . . . 11  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  (
z  x.  A )  =  ( A  x.  z ) )
4038, 39oveq12d 5962 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  (
( z  x.  1 )  /  ( z  x.  A ) )  =  ( z  / 
( A  x.  z
) ) )
4135, 22, 27, 29, 30divcanap5d 8890 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  (
( z  x.  1 )  /  ( z  x.  A ) )  =  ( 1  /  A ) )
4240, 41eqtr3d 2240 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  (
z  /  ( A  x.  z ) )  =  ( 1  /  A ) )
4337, 42oveq12d 5962 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  (
( A  /  ( A  x.  z )
)  -  ( z  /  ( A  x.  z ) ) )  =  ( ( 1  /  z )  -  ( 1  /  A
) ) )
4432, 43eqtrd 2238 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  (
( A  -  z
)  /  ( A  x.  z ) )  =  ( ( 1  /  z )  -  ( 1  /  A
) ) )
4544fveq2d 5580 . . . . . 6  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  ( abs `  ( ( A  -  z )  / 
( A  x.  z
) ) )  =  ( abs `  (
( 1  /  z
)  -  ( 1  /  A ) ) ) )
4622, 27subcld 8383 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  ( A  -  z )  e.  CC )
4746, 28, 31absdivapd 11506 . . . . . 6  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  ( abs `  ( ( A  -  z )  / 
( A  x.  z
) ) )  =  ( ( abs `  ( A  -  z )
)  /  ( abs `  ( A  x.  z
) ) ) )
4845, 47eqtr3d 2240 . . . . 5  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  ( abs `  ( ( 1  /  z )  -  ( 1  /  A
) ) )  =  ( ( abs `  ( A  -  z )
)  /  ( abs `  ( A  x.  z
) ) ) )
4946abscld 11492 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  ( abs `  ( A  -  z ) )  e.  RR )
5021adantr 276 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  T  e.  RR+ )
5150rpred 9818 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  T  e.  RR )
5228abscld 11492 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  ( abs `  ( A  x.  z ) )  e.  RR )
536rpred 9818 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  ->  B  e.  RR )
5453adantr 276 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  B  e.  RR )
5552, 54remulcld 8103 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  (
( abs `  ( A  x.  z )
)  x.  B )  e.  RR )
5622, 27abssubd 11504 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  ( abs `  ( A  -  z ) )  =  ( abs `  (
z  -  A ) ) )
57 simprr 531 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  ( abs `  ( z  -  A ) )  < 
T )
5856, 57eqbrtrd 4066 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  ( abs `  ( A  -  z ) )  < 
T )
597adantr 276 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  (
( abs `  A
)  x.  B )  e.  RR+ )
6059rpred 9818 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  (
( abs `  A
)  x.  B )  e.  RR )
6119adantr 276 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  (
( abs `  A
)  /  2 )  e.  RR+ )
6261rpred 9818 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  (
( abs `  A
)  /  2 )  e.  RR )
6360, 62remulcld 8103 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  (
( ( abs `  A
)  x.  B )  x.  ( ( abs `  A )  /  2
) )  e.  RR )
64 1re 8071 . . . . . . . . . . 11  |-  1  e.  RR
65 min2inf 11544 . . . . . . . . . . 11  |-  ( ( 1  e.  RR  /\  ( ( abs `  A
)  x.  B )  e.  RR )  -> inf ( { 1 ,  ( ( abs `  A
)  x.  B ) } ,  RR ,  <  )  <_  ( ( abs `  A )  x.  B ) )
6664, 60, 65sylancr 414 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  -> inf ( { 1 ,  ( ( abs `  A )  x.  B ) } ,  RR ,  <  )  <_  ( ( abs `  A )  x.  B
) )
6710adantr 276 . . . . . . . . . . 11  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  -> inf ( { 1 ,  ( ( abs `  A )  x.  B ) } ,  RR ,  <  )  e.  RR )
6867, 60, 61lemul1d 9862 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  (inf ( { 1 ,  ( ( abs `  A
)  x.  B ) } ,  RR ,  <  )  <_  ( ( abs `  A )  x.  B )  <->  (inf ( { 1 ,  ( ( abs `  A
)  x.  B ) } ,  RR ,  <  )  x.  ( ( abs `  A )  /  2 ) )  <_  ( ( ( abs `  A )  x.  B )  x.  ( ( abs `  A
)  /  2 ) ) ) )
6966, 68mpbid 147 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  (inf ( { 1 ,  ( ( abs `  A
)  x.  B ) } ,  RR ,  <  )  x.  ( ( abs `  A )  /  2 ) )  <_  ( ( ( abs `  A )  x.  B )  x.  ( ( abs `  A
)  /  2 ) ) )
701, 69eqbrtrid 4079 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  T  <_  ( ( ( abs `  A )  x.  B
)  x.  ( ( abs `  A )  /  2 ) ) )
7127abscld 11492 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  ( abs `  z )  e.  RR )
7222abscld 11492 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  ( abs `  A )  e.  RR )
7372recnd 8101 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  ( abs `  A )  e.  CC )
74732halvesd 9283 . . . . . . . . . . . 12  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  (
( ( abs `  A
)  /  2 )  +  ( ( abs `  A )  /  2
) )  =  ( abs `  A ) )
7572, 71resubcld 8453 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  (
( abs `  A
)  -  ( abs `  z ) )  e.  RR )
7627, 22subcld 8383 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  (
z  -  A )  e.  CC )
7776abscld 11492 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  ( abs `  ( z  -  A ) )  e.  RR )
7856, 77eqeltrd 2282 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  ( abs `  ( A  -  z ) )  e.  RR )
7922, 27abs2difd 11508 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  (
( abs `  A
)  -  ( abs `  z ) )  <_ 
( abs `  ( A  -  z )
) )
80 min1inf 11543 . . . . . . . . . . . . . . . . . . 19  |-  ( ( 1  e.  RR  /\  ( ( abs `  A
)  x.  B )  e.  RR )  -> inf ( { 1 ,  ( ( abs `  A
)  x.  B ) } ,  RR ,  <  )  <_  1 )
8164, 60, 80sylancr 414 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  -> inf ( { 1 ,  ( ( abs `  A )  x.  B ) } ,  RR ,  <  )  <_  1 )
82 1red 8087 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  1  e.  RR )
8367, 82, 61lemul1d 9862 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  (inf ( { 1 ,  ( ( abs `  A
)  x.  B ) } ,  RR ,  <  )  <_  1  <->  (inf ( { 1 ,  ( ( abs `  A
)  x.  B ) } ,  RR ,  <  )  x.  ( ( abs `  A )  /  2 ) )  <_  ( 1  x.  ( ( abs `  A
)  /  2 ) ) ) )
8481, 83mpbid 147 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  (inf ( { 1 ,  ( ( abs `  A
)  x.  B ) } ,  RR ,  <  )  x.  ( ( abs `  A )  /  2 ) )  <_  ( 1  x.  ( ( abs `  A
)  /  2 ) ) )
851, 84eqbrtrid 4079 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  T  <_  ( 1  x.  (
( abs `  A
)  /  2 ) ) )
8662recnd 8101 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  (
( abs `  A
)  /  2 )  e.  CC )
8786mulid2d 8091 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  (
1  x.  ( ( abs `  A )  /  2 ) )  =  ( ( abs `  A )  /  2
) )
8885, 87breqtrd 4070 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  T  <_  ( ( abs `  A
)  /  2 ) )
8978, 51, 62, 58, 88ltletrd 8496 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  ( abs `  ( A  -  z ) )  < 
( ( abs `  A
)  /  2 ) )
9075, 78, 62, 79, 89lelttrd 8197 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  (
( abs `  A
)  -  ( abs `  z ) )  < 
( ( abs `  A
)  /  2 ) )
9172, 71, 62ltsubadd2d 8616 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  (
( ( abs `  A
)  -  ( abs `  z ) )  < 
( ( abs `  A
)  /  2 )  <-> 
( abs `  A
)  <  ( ( abs `  z )  +  ( ( abs `  A
)  /  2 ) ) ) )
9290, 91mpbid 147 . . . . . . . . . . . 12  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  ( abs `  A )  < 
( ( abs `  z
)  +  ( ( abs `  A )  /  2 ) ) )
9374, 92eqbrtrd 4066 . . . . . . . . . . 11  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  (
( ( abs `  A
)  /  2 )  +  ( ( abs `  A )  /  2
) )  <  (
( abs `  z
)  +  ( ( abs `  A )  /  2 ) ) )
9462, 71, 62ltadd1d 8611 . . . . . . . . . . 11  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  (
( ( abs `  A
)  /  2 )  <  ( abs `  z
)  <->  ( ( ( abs `  A )  /  2 )  +  ( ( abs `  A
)  /  2 ) )  <  ( ( abs `  z )  +  ( ( abs `  A )  /  2
) ) ) )
9593, 94mpbird 167 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  (
( abs `  A
)  /  2 )  <  ( abs `  z
) )
9662, 71, 59, 95ltmul2dd 9875 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  (
( ( abs `  A
)  x.  B )  x.  ( ( abs `  A )  /  2
) )  <  (
( ( abs `  A
)  x.  B )  x.  ( abs `  z
) ) )
9722, 27absmuld 11505 . . . . . . . . . . 11  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  ( abs `  ( A  x.  z ) )  =  ( ( abs `  A
)  x.  ( abs `  z ) ) )
9897oveq1d 5959 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  (
( abs `  ( A  x.  z )
)  x.  B )  =  ( ( ( abs `  A )  x.  ( abs `  z
) )  x.  B
) )
9971recnd 8101 . . . . . . . . . . 11  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  ( abs `  z )  e.  CC )
10054recnd 8101 . . . . . . . . . . 11  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  B  e.  CC )
10173, 99, 100mul32d 8225 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  (
( ( abs `  A
)  x.  ( abs `  z ) )  x.  B )  =  ( ( ( abs `  A
)  x.  B )  x.  ( abs `  z
) ) )
10298, 101eqtrd 2238 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  (
( abs `  ( A  x.  z )
)  x.  B )  =  ( ( ( abs `  A )  x.  B )  x.  ( abs `  z
) ) )
10396, 102breqtrrd 4072 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  (
( ( abs `  A
)  x.  B )  x.  ( ( abs `  A )  /  2
) )  <  (
( abs `  ( A  x.  z )
)  x.  B ) )
10451, 63, 55, 70, 103lelttrd 8197 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  T  <  ( ( abs `  ( A  x.  z )
)  x.  B ) )
10549, 51, 55, 58, 104lttrd 8198 . . . . . 6  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  ( abs `  ( A  -  z ) )  < 
( ( abs `  ( A  x.  z )
)  x.  B ) )
10628, 31absrpclapd 11499 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  ( abs `  ( A  x.  z ) )  e.  RR+ )
10749, 54, 106ltdivmuld 9870 . . . . . 6  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  (
( ( abs `  ( A  -  z )
)  /  ( abs `  ( A  x.  z
) ) )  < 
B  <->  ( abs `  ( A  -  z )
)  <  ( ( abs `  ( A  x.  z ) )  x.  B ) ) )
108105, 107mpbird 167 . . . . 5  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  (
( abs `  ( A  -  z )
)  /  ( abs `  ( A  x.  z
) ) )  < 
B )
10948, 108eqbrtrd 4066 . . . 4  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  ( abs `  ( ( 1  /  z )  -  ( 1  /  A
) ) )  < 
B )
110109expr 375 . . 3  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  z  e.  { w  e.  CC  |  w #  0 }
)  ->  ( ( abs `  ( z  -  A ) )  < 
T  ->  ( abs `  ( ( 1  / 
z )  -  (
1  /  A ) ) )  <  B
) )
111110ralrimiva 2579 . 2  |-  ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  ->  A. z  e.  { w  e.  CC  |  w #  0 } 
( ( abs `  (
z  -  A ) )  <  T  -> 
( abs `  (
( 1  /  z
)  -  ( 1  /  A ) ) )  <  B ) )
112 breq2 4048 . . 3  |-  ( y  =  T  ->  (
( abs `  (
z  -  A ) )  <  y  <->  ( abs `  ( z  -  A
) )  <  T
) )
113112rspceaimv 2885 . 2  |-  ( ( T  e.  RR+  /\  A. z  e.  { w  e.  CC  |  w #  0 }  ( ( abs `  ( z  -  A
) )  <  T  ->  ( abs `  (
( 1  /  z
)  -  ( 1  /  A ) ) )  <  B ) )  ->  E. y  e.  RR+  A. z  e. 
{ w  e.  CC  |  w #  0 } 
( ( abs `  (
z  -  A ) )  <  y  -> 
( abs `  (
( 1  /  z
)  -  ( 1  /  A ) ) )  <  B ) )
11421, 111, 113syl2anc 411 1  |-  ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  ->  E. y  e.  RR+  A. z  e. 
{ w  e.  CC  |  w #  0 } 
( ( abs `  (
z  -  A ) )  <  y  -> 
( abs `  (
( 1  /  z
)  -  ( 1  /  A ) ) )  <  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 981    = wceq 1373    e. wcel 2176   A.wral 2484   E.wrex 2485   {crab 2488   {cpr 3634   class class class wbr 4044   ` cfv 5271  (class class class)co 5944  infcinf 7085   CCcc 7923   RRcr 7924   0cc0 7925   1c1 7926    + caddc 7928    x. cmul 7930    < clt 8107    <_ cle 8108    - cmin 8243   # cap 8654    / cdiv 8745   2c2 9087   RR+crp 9775   abscabs 11308
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-iinf 4636  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-mulrcl 8024  ax-addcom 8025  ax-mulcom 8026  ax-addass 8027  ax-mulass 8028  ax-distr 8029  ax-i2m1 8030  ax-0lt1 8031  ax-1rid 8032  ax-0id 8033  ax-rnegex 8034  ax-precex 8035  ax-cnre 8036  ax-pre-ltirr 8037  ax-pre-ltwlin 8038  ax-pre-lttrn 8039  ax-pre-apti 8040  ax-pre-ltadd 8041  ax-pre-mulgt0 8042  ax-pre-mulext 8043  ax-arch 8044  ax-caucvg 8045
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-if 3572  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-tr 4143  df-id 4340  df-po 4343  df-iso 4344  df-iord 4413  df-on 4415  df-ilim 4416  df-suc 4418  df-iom 4639  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-isom 5280  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-1st 6226  df-2nd 6227  df-recs 6391  df-frec 6477  df-sup 7086  df-inf 7087  df-pnf 8109  df-mnf 8110  df-xr 8111  df-ltxr 8112  df-le 8113  df-sub 8245  df-neg 8246  df-reap 8648  df-ap 8655  df-div 8746  df-inn 9037  df-2 9095  df-3 9096  df-4 9097  df-n0 9296  df-z 9373  df-uz 9649  df-rp 9776  df-seqfrec 10593  df-exp 10684  df-cj 11153  df-re 11154  df-im 11155  df-rsqrt 11309  df-abs 11310
This theorem is referenced by:  divcnap  15037  cdivcncfap  15076
  Copyright terms: Public domain W3C validator