ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reccn2ap Unicode version

Theorem reccn2ap 11254
Description: The reciprocal function is continuous. The class  T is just for convenience in writing the proof and typically would be passed in as an instance of eqid 2165. (Contributed by Mario Carneiro, 9-Feb-2014.) Using apart, infimum of pair. (Revised by Jim Kingdon, 26-May-2023.)
Hypothesis
Ref Expression
reccn2ap.t  |-  T  =  (inf ( { 1 ,  ( ( abs `  A )  x.  B
) } ,  RR ,  <  )  x.  (
( abs `  A
)  /  2 ) )
Assertion
Ref Expression
reccn2ap  |-  ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  ->  E. y  e.  RR+  A. z  e. 
{ w  e.  CC  |  w #  0 } 
( ( abs `  (
z  -  A ) )  <  y  -> 
( abs `  (
( 1  /  z
)  -  ( 1  /  A ) ) )  <  B ) )
Distinct variable groups:    y, w, z, A    w, B, y, z    y, T, z
Allowed substitution hint:    T( w)

Proof of Theorem reccn2ap
StepHypRef Expression
1 reccn2ap.t . . 3  |-  T  =  (inf ( { 1 ,  ( ( abs `  A )  x.  B
) } ,  RR ,  <  )  x.  (
( abs `  A
)  /  2 ) )
2 1red 7914 . . . . . 6  |-  ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  ->  1  e.  RR )
3 simp1 987 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  ->  A  e.  CC )
4 simp2 988 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  ->  A #  0 )
53, 4absrpclapd 11130 . . . . . . . 8  |-  ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  ->  ( abs `  A )  e.  RR+ )
6 simp3 989 . . . . . . . 8  |-  ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  ->  B  e.  RR+ )
75, 6rpmulcld 9649 . . . . . . 7  |-  ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  ->  ( ( abs `  A )  x.  B )  e.  RR+ )
87rpred 9632 . . . . . 6  |-  ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  ->  ( ( abs `  A )  x.  B )  e.  RR )
9 mincl 11172 . . . . . 6  |-  ( ( 1  e.  RR  /\  ( ( abs `  A
)  x.  B )  e.  RR )  -> inf ( { 1 ,  ( ( abs `  A
)  x.  B ) } ,  RR ,  <  )  e.  RR )
102, 8, 9syl2anc 409 . . . . 5  |-  ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  -> inf ( { 1 ,  ( ( abs `  A )  x.  B ) } ,  RR ,  <  )  e.  RR )
117rpgt0d 9635 . . . . . . 7  |-  ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  ->  0  < 
( ( abs `  A
)  x.  B ) )
12 0lt1 8025 . . . . . . 7  |-  0  <  1
1311, 12jctil 310 . . . . . 6  |-  ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  ->  ( 0  <  1  /\  0  <  ( ( abs `  A
)  x.  B ) ) )
14 0red 7900 . . . . . . 7  |-  ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  ->  0  e.  RR )
15 ltmininf 11176 . . . . . . 7  |-  ( ( 0  e.  RR  /\  1  e.  RR  /\  (
( abs `  A
)  x.  B )  e.  RR )  -> 
( 0  < inf ( { 1 ,  ( ( abs `  A
)  x.  B ) } ,  RR ,  <  )  <->  ( 0  <  1  /\  0  < 
( ( abs `  A
)  x.  B ) ) ) )
1614, 2, 8, 15syl3anc 1228 . . . . . 6  |-  ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  ->  ( 0  < inf ( { 1 ,  ( ( abs `  A )  x.  B
) } ,  RR ,  <  )  <->  ( 0  <  1  /\  0  <  ( ( abs `  A
)  x.  B ) ) ) )
1713, 16mpbird 166 . . . . 5  |-  ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  ->  0  < inf ( { 1 ,  ( ( abs `  A
)  x.  B ) } ,  RR ,  <  ) )
1810, 17elrpd 9629 . . . 4  |-  ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  -> inf ( { 1 ,  ( ( abs `  A )  x.  B ) } ,  RR ,  <  )  e.  RR+ )
195rphalfcld 9645 . . . 4  |-  ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  ->  ( ( abs `  A )  /  2 )  e.  RR+ )
2018, 19rpmulcld 9649 . . 3  |-  ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  ->  (inf ( { 1 ,  ( ( abs `  A
)  x.  B ) } ,  RR ,  <  )  x.  ( ( abs `  A )  /  2 ) )  e.  RR+ )
211, 20eqeltrid 2253 . 2  |-  ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  ->  T  e.  RR+ )
223adantr 274 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  A  e.  CC )
23 simprl 521 . . . . . . . . . . 11  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  z  e.  { w  e.  CC  |  w #  0 }
)
24 breq1 3985 . . . . . . . . . . . 12  |-  ( w  =  z  ->  (
w #  0  <->  z #  0
) )
2524elrab 2882 . . . . . . . . . . 11  |-  ( z  e.  { w  e.  CC  |  w #  0 }  <->  ( z  e.  CC  /\  z #  0 ) )
2623, 25sylib 121 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  (
z  e.  CC  /\  z #  0 ) )
2726simpld 111 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  z  e.  CC )
2822, 27mulcld 7919 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  ( A  x.  z )  e.  CC )
294adantr 274 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  A #  0 )
3026simprd 113 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  z #  0 )
3122, 27, 29, 30mulap0d 8555 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  ( A  x.  z ) #  0 )
3222, 27, 28, 31divsubdirapd 8726 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  (
( A  -  z
)  /  ( A  x.  z ) )  =  ( ( A  /  ( A  x.  z ) )  -  ( z  /  ( A  x.  z )
) ) )
3322mulid1d 7916 . . . . . . . . . . 11  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  ( A  x.  1 )  =  A )
3433oveq1d 5857 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  (
( A  x.  1 )  /  ( A  x.  z ) )  =  ( A  / 
( A  x.  z
) ) )
35 1cnd 7915 . . . . . . . . . . 11  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  1  e.  CC )
3635, 27, 22, 30, 29divcanap5d 8713 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  (
( A  x.  1 )  /  ( A  x.  z ) )  =  ( 1  / 
z ) )
3734, 36eqtr3d 2200 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  ( A  /  ( A  x.  z ) )  =  ( 1  /  z
) )
3827mulid1d 7916 . . . . . . . . . . 11  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  (
z  x.  1 )  =  z )
3927, 22mulcomd 7920 . . . . . . . . . . 11  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  (
z  x.  A )  =  ( A  x.  z ) )
4038, 39oveq12d 5860 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  (
( z  x.  1 )  /  ( z  x.  A ) )  =  ( z  / 
( A  x.  z
) ) )
4135, 22, 27, 29, 30divcanap5d 8713 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  (
( z  x.  1 )  /  ( z  x.  A ) )  =  ( 1  /  A ) )
4240, 41eqtr3d 2200 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  (
z  /  ( A  x.  z ) )  =  ( 1  /  A ) )
4337, 42oveq12d 5860 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  (
( A  /  ( A  x.  z )
)  -  ( z  /  ( A  x.  z ) ) )  =  ( ( 1  /  z )  -  ( 1  /  A
) ) )
4432, 43eqtrd 2198 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  (
( A  -  z
)  /  ( A  x.  z ) )  =  ( ( 1  /  z )  -  ( 1  /  A
) ) )
4544fveq2d 5490 . . . . . 6  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  ( abs `  ( ( A  -  z )  / 
( A  x.  z
) ) )  =  ( abs `  (
( 1  /  z
)  -  ( 1  /  A ) ) ) )
4622, 27subcld 8209 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  ( A  -  z )  e.  CC )
4746, 28, 31absdivapd 11137 . . . . . 6  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  ( abs `  ( ( A  -  z )  / 
( A  x.  z
) ) )  =  ( ( abs `  ( A  -  z )
)  /  ( abs `  ( A  x.  z
) ) ) )
4845, 47eqtr3d 2200 . . . . 5  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  ( abs `  ( ( 1  /  z )  -  ( 1  /  A
) ) )  =  ( ( abs `  ( A  -  z )
)  /  ( abs `  ( A  x.  z
) ) ) )
4946abscld 11123 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  ( abs `  ( A  -  z ) )  e.  RR )
5021adantr 274 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  T  e.  RR+ )
5150rpred 9632 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  T  e.  RR )
5228abscld 11123 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  ( abs `  ( A  x.  z ) )  e.  RR )
536rpred 9632 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  ->  B  e.  RR )
5453adantr 274 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  B  e.  RR )
5552, 54remulcld 7929 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  (
( abs `  ( A  x.  z )
)  x.  B )  e.  RR )
5622, 27abssubd 11135 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  ( abs `  ( A  -  z ) )  =  ( abs `  (
z  -  A ) ) )
57 simprr 522 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  ( abs `  ( z  -  A ) )  < 
T )
5856, 57eqbrtrd 4004 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  ( abs `  ( A  -  z ) )  < 
T )
597adantr 274 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  (
( abs `  A
)  x.  B )  e.  RR+ )
6059rpred 9632 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  (
( abs `  A
)  x.  B )  e.  RR )
6119adantr 274 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  (
( abs `  A
)  /  2 )  e.  RR+ )
6261rpred 9632 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  (
( abs `  A
)  /  2 )  e.  RR )
6360, 62remulcld 7929 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  (
( ( abs `  A
)  x.  B )  x.  ( ( abs `  A )  /  2
) )  e.  RR )
64 1re 7898 . . . . . . . . . . 11  |-  1  e.  RR
65 min2inf 11174 . . . . . . . . . . 11  |-  ( ( 1  e.  RR  /\  ( ( abs `  A
)  x.  B )  e.  RR )  -> inf ( { 1 ,  ( ( abs `  A
)  x.  B ) } ,  RR ,  <  )  <_  ( ( abs `  A )  x.  B ) )
6664, 60, 65sylancr 411 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  -> inf ( { 1 ,  ( ( abs `  A )  x.  B ) } ,  RR ,  <  )  <_  ( ( abs `  A )  x.  B
) )
6710adantr 274 . . . . . . . . . . 11  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  -> inf ( { 1 ,  ( ( abs `  A )  x.  B ) } ,  RR ,  <  )  e.  RR )
6867, 60, 61lemul1d 9676 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  (inf ( { 1 ,  ( ( abs `  A
)  x.  B ) } ,  RR ,  <  )  <_  ( ( abs `  A )  x.  B )  <->  (inf ( { 1 ,  ( ( abs `  A
)  x.  B ) } ,  RR ,  <  )  x.  ( ( abs `  A )  /  2 ) )  <_  ( ( ( abs `  A )  x.  B )  x.  ( ( abs `  A
)  /  2 ) ) ) )
6966, 68mpbid 146 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  (inf ( { 1 ,  ( ( abs `  A
)  x.  B ) } ,  RR ,  <  )  x.  ( ( abs `  A )  /  2 ) )  <_  ( ( ( abs `  A )  x.  B )  x.  ( ( abs `  A
)  /  2 ) ) )
701, 69eqbrtrid 4017 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  T  <_  ( ( ( abs `  A )  x.  B
)  x.  ( ( abs `  A )  /  2 ) ) )
7127abscld 11123 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  ( abs `  z )  e.  RR )
7222abscld 11123 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  ( abs `  A )  e.  RR )
7372recnd 7927 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  ( abs `  A )  e.  CC )
74732halvesd 9102 . . . . . . . . . . . 12  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  (
( ( abs `  A
)  /  2 )  +  ( ( abs `  A )  /  2
) )  =  ( abs `  A ) )
7572, 71resubcld 8279 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  (
( abs `  A
)  -  ( abs `  z ) )  e.  RR )
7627, 22subcld 8209 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  (
z  -  A )  e.  CC )
7776abscld 11123 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  ( abs `  ( z  -  A ) )  e.  RR )
7856, 77eqeltrd 2243 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  ( abs `  ( A  -  z ) )  e.  RR )
7922, 27abs2difd 11139 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  (
( abs `  A
)  -  ( abs `  z ) )  <_ 
( abs `  ( A  -  z )
) )
80 min1inf 11173 . . . . . . . . . . . . . . . . . . 19  |-  ( ( 1  e.  RR  /\  ( ( abs `  A
)  x.  B )  e.  RR )  -> inf ( { 1 ,  ( ( abs `  A
)  x.  B ) } ,  RR ,  <  )  <_  1 )
8164, 60, 80sylancr 411 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  -> inf ( { 1 ,  ( ( abs `  A )  x.  B ) } ,  RR ,  <  )  <_  1 )
82 1red 7914 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  1  e.  RR )
8367, 82, 61lemul1d 9676 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  (inf ( { 1 ,  ( ( abs `  A
)  x.  B ) } ,  RR ,  <  )  <_  1  <->  (inf ( { 1 ,  ( ( abs `  A
)  x.  B ) } ,  RR ,  <  )  x.  ( ( abs `  A )  /  2 ) )  <_  ( 1  x.  ( ( abs `  A
)  /  2 ) ) ) )
8481, 83mpbid 146 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  (inf ( { 1 ,  ( ( abs `  A
)  x.  B ) } ,  RR ,  <  )  x.  ( ( abs `  A )  /  2 ) )  <_  ( 1  x.  ( ( abs `  A
)  /  2 ) ) )
851, 84eqbrtrid 4017 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  T  <_  ( 1  x.  (
( abs `  A
)  /  2 ) ) )
8662recnd 7927 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  (
( abs `  A
)  /  2 )  e.  CC )
8786mulid2d 7917 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  (
1  x.  ( ( abs `  A )  /  2 ) )  =  ( ( abs `  A )  /  2
) )
8885, 87breqtrd 4008 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  T  <_  ( ( abs `  A
)  /  2 ) )
8978, 51, 62, 58, 88ltletrd 8321 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  ( abs `  ( A  -  z ) )  < 
( ( abs `  A
)  /  2 ) )
9075, 78, 62, 79, 89lelttrd 8023 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  (
( abs `  A
)  -  ( abs `  z ) )  < 
( ( abs `  A
)  /  2 ) )
9172, 71, 62ltsubadd2d 8441 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  (
( ( abs `  A
)  -  ( abs `  z ) )  < 
( ( abs `  A
)  /  2 )  <-> 
( abs `  A
)  <  ( ( abs `  z )  +  ( ( abs `  A
)  /  2 ) ) ) )
9290, 91mpbid 146 . . . . . . . . . . . 12  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  ( abs `  A )  < 
( ( abs `  z
)  +  ( ( abs `  A )  /  2 ) ) )
9374, 92eqbrtrd 4004 . . . . . . . . . . 11  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  (
( ( abs `  A
)  /  2 )  +  ( ( abs `  A )  /  2
) )  <  (
( abs `  z
)  +  ( ( abs `  A )  /  2 ) ) )
9462, 71, 62ltadd1d 8436 . . . . . . . . . . 11  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  (
( ( abs `  A
)  /  2 )  <  ( abs `  z
)  <->  ( ( ( abs `  A )  /  2 )  +  ( ( abs `  A
)  /  2 ) )  <  ( ( abs `  z )  +  ( ( abs `  A )  /  2
) ) ) )
9593, 94mpbird 166 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  (
( abs `  A
)  /  2 )  <  ( abs `  z
) )
9662, 71, 59, 95ltmul2dd 9689 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  (
( ( abs `  A
)  x.  B )  x.  ( ( abs `  A )  /  2
) )  <  (
( ( abs `  A
)  x.  B )  x.  ( abs `  z
) ) )
9722, 27absmuld 11136 . . . . . . . . . . 11  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  ( abs `  ( A  x.  z ) )  =  ( ( abs `  A
)  x.  ( abs `  z ) ) )
9897oveq1d 5857 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  (
( abs `  ( A  x.  z )
)  x.  B )  =  ( ( ( abs `  A )  x.  ( abs `  z
) )  x.  B
) )
9971recnd 7927 . . . . . . . . . . 11  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  ( abs `  z )  e.  CC )
10054recnd 7927 . . . . . . . . . . 11  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  B  e.  CC )
10173, 99, 100mul32d 8051 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  (
( ( abs `  A
)  x.  ( abs `  z ) )  x.  B )  =  ( ( ( abs `  A
)  x.  B )  x.  ( abs `  z
) ) )
10298, 101eqtrd 2198 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  (
( abs `  ( A  x.  z )
)  x.  B )  =  ( ( ( abs `  A )  x.  B )  x.  ( abs `  z
) ) )
10396, 102breqtrrd 4010 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  (
( ( abs `  A
)  x.  B )  x.  ( ( abs `  A )  /  2
) )  <  (
( abs `  ( A  x.  z )
)  x.  B ) )
10451, 63, 55, 70, 103lelttrd 8023 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  T  <  ( ( abs `  ( A  x.  z )
)  x.  B ) )
10549, 51, 55, 58, 104lttrd 8024 . . . . . 6  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  ( abs `  ( A  -  z ) )  < 
( ( abs `  ( A  x.  z )
)  x.  B ) )
10628, 31absrpclapd 11130 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  ( abs `  ( A  x.  z ) )  e.  RR+ )
10749, 54, 106ltdivmuld 9684 . . . . . 6  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  (
( ( abs `  ( A  -  z )
)  /  ( abs `  ( A  x.  z
) ) )  < 
B  <->  ( abs `  ( A  -  z )
)  <  ( ( abs `  ( A  x.  z ) )  x.  B ) ) )
108105, 107mpbird 166 . . . . 5  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  (
( abs `  ( A  -  z )
)  /  ( abs `  ( A  x.  z
) ) )  < 
B )
10948, 108eqbrtrd 4004 . . . 4  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  (
z  e.  { w  e.  CC  |  w #  0 }  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  ( abs `  ( ( 1  /  z )  -  ( 1  /  A
) ) )  < 
B )
110109expr 373 . . 3  |-  ( ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  /\  z  e.  { w  e.  CC  |  w #  0 }
)  ->  ( ( abs `  ( z  -  A ) )  < 
T  ->  ( abs `  ( ( 1  / 
z )  -  (
1  /  A ) ) )  <  B
) )
111110ralrimiva 2539 . 2  |-  ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  ->  A. z  e.  { w  e.  CC  |  w #  0 } 
( ( abs `  (
z  -  A ) )  <  T  -> 
( abs `  (
( 1  /  z
)  -  ( 1  /  A ) ) )  <  B ) )
112 breq2 3986 . . 3  |-  ( y  =  T  ->  (
( abs `  (
z  -  A ) )  <  y  <->  ( abs `  ( z  -  A
) )  <  T
) )
113112rspceaimv 2838 . 2  |-  ( ( T  e.  RR+  /\  A. z  e.  { w  e.  CC  |  w #  0 }  ( ( abs `  ( z  -  A
) )  <  T  ->  ( abs `  (
( 1  /  z
)  -  ( 1  /  A ) ) )  <  B ) )  ->  E. y  e.  RR+  A. z  e. 
{ w  e.  CC  |  w #  0 } 
( ( abs `  (
z  -  A ) )  <  y  -> 
( abs `  (
( 1  /  z
)  -  ( 1  /  A ) ) )  <  B ) )
11421, 111, 113syl2anc 409 1  |-  ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  ->  E. y  e.  RR+  A. z  e. 
{ w  e.  CC  |  w #  0 } 
( ( abs `  (
z  -  A ) )  <  y  -> 
( abs `  (
( 1  /  z
)  -  ( 1  /  A ) ) )  <  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 968    = wceq 1343    e. wcel 2136   A.wral 2444   E.wrex 2445   {crab 2448   {cpr 3577   class class class wbr 3982   ` cfv 5188  (class class class)co 5842  infcinf 6948   CCcc 7751   RRcr 7752   0cc0 7753   1c1 7754    + caddc 7756    x. cmul 7758    < clt 7933    <_ cle 7934    - cmin 8069   # cap 8479    / cdiv 8568   2c2 8908   RR+crp 9589   abscabs 10939
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871  ax-arch 7872  ax-caucvg 7873
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-ilim 4347  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-isom 5197  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-frec 6359  df-sup 6949  df-inf 6950  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-div 8569  df-inn 8858  df-2 8916  df-3 8917  df-4 8918  df-n0 9115  df-z 9192  df-uz 9467  df-rp 9590  df-seqfrec 10381  df-exp 10455  df-cj 10784  df-re 10785  df-im 10786  df-rsqrt 10940  df-abs 10941
This theorem is referenced by:  divcnap  13195  cdivcncfap  13227
  Copyright terms: Public domain W3C validator