ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elcncf1di Unicode version

Theorem elcncf1di 15166
Description: Membership in the set of continuous complex functions from 
A to  B. (Contributed by Paul Chapman, 26-Nov-2007.)
Hypotheses
Ref Expression
elcncf1d.1  |-  ( ph  ->  F : A --> B )
elcncf1d.2  |-  ( ph  ->  ( ( x  e.  A  /\  y  e.  RR+ )  ->  Z  e.  RR+ ) )
elcncf1d.3  |-  ( ph  ->  ( ( ( x  e.  A  /\  w  e.  A )  /\  y  e.  RR+ )  ->  (
( abs `  (
x  -  w ) )  <  Z  -> 
( abs `  (
( F `  x
)  -  ( F `
 w ) ) )  <  y ) ) )
Assertion
Ref Expression
elcncf1di  |-  ( ph  ->  ( ( A  C_  CC  /\  B  C_  CC )  ->  F  e.  ( A -cn-> B ) ) )
Distinct variable groups:    x, w, y, A    w, B, x, y    w, F, x, y    ph, w, x, y   
w, Z
Allowed substitution hints:    Z( x, y)

Proof of Theorem elcncf1di
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 elcncf1d.1 . . 3  |-  ( ph  ->  F : A --> B )
2 elcncf1d.2 . . . . . 6  |-  ( ph  ->  ( ( x  e.  A  /\  y  e.  RR+ )  ->  Z  e.  RR+ ) )
32imp 124 . . . . 5  |-  ( (
ph  /\  ( x  e.  A  /\  y  e.  RR+ ) )  ->  Z  e.  RR+ )
4 an32 562 . . . . . . . . 9  |-  ( ( ( x  e.  A  /\  w  e.  A
)  /\  y  e.  RR+ )  <->  ( ( x  e.  A  /\  y  e.  RR+ )  /\  w  e.  A ) )
54anbi2i 457 . . . . . . . 8  |-  ( (
ph  /\  ( (
x  e.  A  /\  w  e.  A )  /\  y  e.  RR+ )
)  <->  ( ph  /\  ( ( x  e.  A  /\  y  e.  RR+ )  /\  w  e.  A ) ) )
6 anass 401 . . . . . . . 8  |-  ( ( ( ph  /\  (
x  e.  A  /\  y  e.  RR+ ) )  /\  w  e.  A
)  <->  ( ph  /\  ( ( x  e.  A  /\  y  e.  RR+ )  /\  w  e.  A ) ) )
75, 6bitr4i 187 . . . . . . 7  |-  ( (
ph  /\  ( (
x  e.  A  /\  w  e.  A )  /\  y  e.  RR+ )
)  <->  ( ( ph  /\  ( x  e.  A  /\  y  e.  RR+ )
)  /\  w  e.  A ) )
8 elcncf1d.3 . . . . . . . 8  |-  ( ph  ->  ( ( ( x  e.  A  /\  w  e.  A )  /\  y  e.  RR+ )  ->  (
( abs `  (
x  -  w ) )  <  Z  -> 
( abs `  (
( F `  x
)  -  ( F `
 w ) ) )  <  y ) ) )
98imp 124 . . . . . . 7  |-  ( (
ph  /\  ( (
x  e.  A  /\  w  e.  A )  /\  y  e.  RR+ )
)  ->  ( ( abs `  ( x  -  w ) )  < 
Z  ->  ( abs `  ( ( F `  x )  -  ( F `  w )
) )  <  y
) )
107, 9sylbir 135 . . . . . 6  |-  ( ( ( ph  /\  (
x  e.  A  /\  y  e.  RR+ ) )  /\  w  e.  A
)  ->  ( ( abs `  ( x  -  w ) )  < 
Z  ->  ( abs `  ( ( F `  x )  -  ( F `  w )
) )  <  y
) )
1110ralrimiva 2581 . . . . 5  |-  ( (
ph  /\  ( x  e.  A  /\  y  e.  RR+ ) )  ->  A. w  e.  A  ( ( abs `  (
x  -  w ) )  <  Z  -> 
( abs `  (
( F `  x
)  -  ( F `
 w ) ) )  <  y ) )
12 breq2 4063 . . . . . 6  |-  ( z  =  Z  ->  (
( abs `  (
x  -  w ) )  <  z  <->  ( abs `  ( x  -  w
) )  <  Z
) )
1312rspceaimv 2892 . . . . 5  |-  ( ( Z  e.  RR+  /\  A. w  e.  A  (
( abs `  (
x  -  w ) )  <  Z  -> 
( abs `  (
( F `  x
)  -  ( F `
 w ) ) )  <  y ) )  ->  E. z  e.  RR+  A. w  e.  A  ( ( abs `  ( x  -  w
) )  <  z  ->  ( abs `  (
( F `  x
)  -  ( F `
 w ) ) )  <  y ) )
143, 11, 13syl2anc 411 . . . 4  |-  ( (
ph  /\  ( x  e.  A  /\  y  e.  RR+ ) )  ->  E. z  e.  RR+  A. w  e.  A  ( ( abs `  ( x  -  w ) )  < 
z  ->  ( abs `  ( ( F `  x )  -  ( F `  w )
) )  <  y
) )
1514ralrimivva 2590 . . 3  |-  ( ph  ->  A. x  e.  A  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( abs `  ( x  -  w
) )  <  z  ->  ( abs `  (
( F `  x
)  -  ( F `
 w ) ) )  <  y ) )
161, 15jca 306 . 2  |-  ( ph  ->  ( F : A --> B  /\  A. x  e.  A  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( abs `  (
x  -  w ) )  <  z  -> 
( abs `  (
( F `  x
)  -  ( F `
 w ) ) )  <  y ) ) )
17 elcncf 15160 . 2  |-  ( ( A  C_  CC  /\  B  C_  CC )  ->  ( F  e.  ( A -cn-> B )  <->  ( F : A --> B  /\  A. x  e.  A  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( abs `  ( x  -  w
) )  <  z  ->  ( abs `  (
( F `  x
)  -  ( F `
 w ) ) )  <  y ) ) ) )
1816, 17syl5ibrcom 157 1  |-  ( ph  ->  ( ( A  C_  CC  /\  B  C_  CC )  ->  F  e.  ( A -cn-> B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    e. wcel 2178   A.wral 2486   E.wrex 2487    C_ wss 3174   class class class wbr 4059   -->wf 5286   ` cfv 5290  (class class class)co 5967   CCcc 7958    < clt 8142    - cmin 8278   RR+crp 9810   abscabs 11423   -cn->ccncf 15157
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-cnex 8051
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-ral 2491  df-rex 2492  df-rab 2495  df-v 2778  df-sbc 3006  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-br 4060  df-opab 4122  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-fv 5298  df-ov 5970  df-oprab 5971  df-mpo 5972  df-map 6760  df-cncf 15158
This theorem is referenced by:  elcncf1ii  15167  cncfmptc  15183  cncfmptid  15184  addccncf  15187  negcncf  15192
  Copyright terms: Public domain W3C validator