ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elcncf1di Unicode version

Theorem elcncf1di 12774
Description: Membership in the set of continuous complex functions from 
A to  B. (Contributed by Paul Chapman, 26-Nov-2007.)
Hypotheses
Ref Expression
elcncf1d.1  |-  ( ph  ->  F : A --> B )
elcncf1d.2  |-  ( ph  ->  ( ( x  e.  A  /\  y  e.  RR+ )  ->  Z  e.  RR+ ) )
elcncf1d.3  |-  ( ph  ->  ( ( ( x  e.  A  /\  w  e.  A )  /\  y  e.  RR+ )  ->  (
( abs `  (
x  -  w ) )  <  Z  -> 
( abs `  (
( F `  x
)  -  ( F `
 w ) ) )  <  y ) ) )
Assertion
Ref Expression
elcncf1di  |-  ( ph  ->  ( ( A  C_  CC  /\  B  C_  CC )  ->  F  e.  ( A -cn-> B ) ) )
Distinct variable groups:    x, w, y, A    w, B, x, y    w, F, x, y    ph, w, x, y   
w, Z
Allowed substitution hints:    Z( x, y)

Proof of Theorem elcncf1di
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 elcncf1d.1 . . 3  |-  ( ph  ->  F : A --> B )
2 elcncf1d.2 . . . . . 6  |-  ( ph  ->  ( ( x  e.  A  /\  y  e.  RR+ )  ->  Z  e.  RR+ ) )
32imp 123 . . . . 5  |-  ( (
ph  /\  ( x  e.  A  /\  y  e.  RR+ ) )  ->  Z  e.  RR+ )
4 an32 552 . . . . . . . . 9  |-  ( ( ( x  e.  A  /\  w  e.  A
)  /\  y  e.  RR+ )  <->  ( ( x  e.  A  /\  y  e.  RR+ )  /\  w  e.  A ) )
54anbi2i 453 . . . . . . . 8  |-  ( (
ph  /\  ( (
x  e.  A  /\  w  e.  A )  /\  y  e.  RR+ )
)  <->  ( ph  /\  ( ( x  e.  A  /\  y  e.  RR+ )  /\  w  e.  A ) ) )
6 anass 399 . . . . . . . 8  |-  ( ( ( ph  /\  (
x  e.  A  /\  y  e.  RR+ ) )  /\  w  e.  A
)  <->  ( ph  /\  ( ( x  e.  A  /\  y  e.  RR+ )  /\  w  e.  A ) ) )
75, 6bitr4i 186 . . . . . . 7  |-  ( (
ph  /\  ( (
x  e.  A  /\  w  e.  A )  /\  y  e.  RR+ )
)  <->  ( ( ph  /\  ( x  e.  A  /\  y  e.  RR+ )
)  /\  w  e.  A ) )
8 elcncf1d.3 . . . . . . . 8  |-  ( ph  ->  ( ( ( x  e.  A  /\  w  e.  A )  /\  y  e.  RR+ )  ->  (
( abs `  (
x  -  w ) )  <  Z  -> 
( abs `  (
( F `  x
)  -  ( F `
 w ) ) )  <  y ) ) )
98imp 123 . . . . . . 7  |-  ( (
ph  /\  ( (
x  e.  A  /\  w  e.  A )  /\  y  e.  RR+ )
)  ->  ( ( abs `  ( x  -  w ) )  < 
Z  ->  ( abs `  ( ( F `  x )  -  ( F `  w )
) )  <  y
) )
107, 9sylbir 134 . . . . . 6  |-  ( ( ( ph  /\  (
x  e.  A  /\  y  e.  RR+ ) )  /\  w  e.  A
)  ->  ( ( abs `  ( x  -  w ) )  < 
Z  ->  ( abs `  ( ( F `  x )  -  ( F `  w )
) )  <  y
) )
1110ralrimiva 2508 . . . . 5  |-  ( (
ph  /\  ( x  e.  A  /\  y  e.  RR+ ) )  ->  A. w  e.  A  ( ( abs `  (
x  -  w ) )  <  Z  -> 
( abs `  (
( F `  x
)  -  ( F `
 w ) ) )  <  y ) )
12 breq2 3941 . . . . . 6  |-  ( z  =  Z  ->  (
( abs `  (
x  -  w ) )  <  z  <->  ( abs `  ( x  -  w
) )  <  Z
) )
1312rspceaimv 2801 . . . . 5  |-  ( ( Z  e.  RR+  /\  A. w  e.  A  (
( abs `  (
x  -  w ) )  <  Z  -> 
( abs `  (
( F `  x
)  -  ( F `
 w ) ) )  <  y ) )  ->  E. z  e.  RR+  A. w  e.  A  ( ( abs `  ( x  -  w
) )  <  z  ->  ( abs `  (
( F `  x
)  -  ( F `
 w ) ) )  <  y ) )
143, 11, 13syl2anc 409 . . . 4  |-  ( (
ph  /\  ( x  e.  A  /\  y  e.  RR+ ) )  ->  E. z  e.  RR+  A. w  e.  A  ( ( abs `  ( x  -  w ) )  < 
z  ->  ( abs `  ( ( F `  x )  -  ( F `  w )
) )  <  y
) )
1514ralrimivva 2517 . . 3  |-  ( ph  ->  A. x  e.  A  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( abs `  ( x  -  w
) )  <  z  ->  ( abs `  (
( F `  x
)  -  ( F `
 w ) ) )  <  y ) )
161, 15jca 304 . 2  |-  ( ph  ->  ( F : A --> B  /\  A. x  e.  A  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( abs `  (
x  -  w ) )  <  z  -> 
( abs `  (
( F `  x
)  -  ( F `
 w ) ) )  <  y ) ) )
17 elcncf 12768 . 2  |-  ( ( A  C_  CC  /\  B  C_  CC )  ->  ( F  e.  ( A -cn-> B )  <->  ( F : A --> B  /\  A. x  e.  A  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( abs `  ( x  -  w
) )  <  z  ->  ( abs `  (
( F `  x
)  -  ( F `
 w ) ) )  <  y ) ) ) )
1816, 17syl5ibrcom 156 1  |-  ( ph  ->  ( ( A  C_  CC  /\  B  C_  CC )  ->  F  e.  ( A -cn-> B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    e. wcel 1481   A.wral 2417   E.wrex 2418    C_ wss 3076   class class class wbr 3937   -->wf 5127   ` cfv 5131  (class class class)co 5782   CCcc 7642    < clt 7824    - cmin 7957   RR+crp 9470   abscabs 10801   -cn->ccncf 12765
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-cnex 7735
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-ral 2422  df-rex 2423  df-rab 2426  df-v 2691  df-sbc 2914  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-br 3938  df-opab 3998  df-id 4223  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-fv 5139  df-ov 5785  df-oprab 5786  df-mpo 5787  df-map 6552  df-cncf 12766
This theorem is referenced by:  elcncf1ii  12775  cncfmptc  12790  cncfmptid  12791  addccncf  12794  negcncf  12796
  Copyright terms: Public domain W3C validator