ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elcncf1di Unicode version

Theorem elcncf1di 14899
Description: Membership in the set of continuous complex functions from 
A to  B. (Contributed by Paul Chapman, 26-Nov-2007.)
Hypotheses
Ref Expression
elcncf1d.1  |-  ( ph  ->  F : A --> B )
elcncf1d.2  |-  ( ph  ->  ( ( x  e.  A  /\  y  e.  RR+ )  ->  Z  e.  RR+ ) )
elcncf1d.3  |-  ( ph  ->  ( ( ( x  e.  A  /\  w  e.  A )  /\  y  e.  RR+ )  ->  (
( abs `  (
x  -  w ) )  <  Z  -> 
( abs `  (
( F `  x
)  -  ( F `
 w ) ) )  <  y ) ) )
Assertion
Ref Expression
elcncf1di  |-  ( ph  ->  ( ( A  C_  CC  /\  B  C_  CC )  ->  F  e.  ( A -cn-> B ) ) )
Distinct variable groups:    x, w, y, A    w, B, x, y    w, F, x, y    ph, w, x, y   
w, Z
Allowed substitution hints:    Z( x, y)

Proof of Theorem elcncf1di
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 elcncf1d.1 . . 3  |-  ( ph  ->  F : A --> B )
2 elcncf1d.2 . . . . . 6  |-  ( ph  ->  ( ( x  e.  A  /\  y  e.  RR+ )  ->  Z  e.  RR+ ) )
32imp 124 . . . . 5  |-  ( (
ph  /\  ( x  e.  A  /\  y  e.  RR+ ) )  ->  Z  e.  RR+ )
4 an32 562 . . . . . . . . 9  |-  ( ( ( x  e.  A  /\  w  e.  A
)  /\  y  e.  RR+ )  <->  ( ( x  e.  A  /\  y  e.  RR+ )  /\  w  e.  A ) )
54anbi2i 457 . . . . . . . 8  |-  ( (
ph  /\  ( (
x  e.  A  /\  w  e.  A )  /\  y  e.  RR+ )
)  <->  ( ph  /\  ( ( x  e.  A  /\  y  e.  RR+ )  /\  w  e.  A ) ) )
6 anass 401 . . . . . . . 8  |-  ( ( ( ph  /\  (
x  e.  A  /\  y  e.  RR+ ) )  /\  w  e.  A
)  <->  ( ph  /\  ( ( x  e.  A  /\  y  e.  RR+ )  /\  w  e.  A ) ) )
75, 6bitr4i 187 . . . . . . 7  |-  ( (
ph  /\  ( (
x  e.  A  /\  w  e.  A )  /\  y  e.  RR+ )
)  <->  ( ( ph  /\  ( x  e.  A  /\  y  e.  RR+ )
)  /\  w  e.  A ) )
8 elcncf1d.3 . . . . . . . 8  |-  ( ph  ->  ( ( ( x  e.  A  /\  w  e.  A )  /\  y  e.  RR+ )  ->  (
( abs `  (
x  -  w ) )  <  Z  -> 
( abs `  (
( F `  x
)  -  ( F `
 w ) ) )  <  y ) ) )
98imp 124 . . . . . . 7  |-  ( (
ph  /\  ( (
x  e.  A  /\  w  e.  A )  /\  y  e.  RR+ )
)  ->  ( ( abs `  ( x  -  w ) )  < 
Z  ->  ( abs `  ( ( F `  x )  -  ( F `  w )
) )  <  y
) )
107, 9sylbir 135 . . . . . 6  |-  ( ( ( ph  /\  (
x  e.  A  /\  y  e.  RR+ ) )  /\  w  e.  A
)  ->  ( ( abs `  ( x  -  w ) )  < 
Z  ->  ( abs `  ( ( F `  x )  -  ( F `  w )
) )  <  y
) )
1110ralrimiva 2570 . . . . 5  |-  ( (
ph  /\  ( x  e.  A  /\  y  e.  RR+ ) )  ->  A. w  e.  A  ( ( abs `  (
x  -  w ) )  <  Z  -> 
( abs `  (
( F `  x
)  -  ( F `
 w ) ) )  <  y ) )
12 breq2 4038 . . . . . 6  |-  ( z  =  Z  ->  (
( abs `  (
x  -  w ) )  <  z  <->  ( abs `  ( x  -  w
) )  <  Z
) )
1312rspceaimv 2876 . . . . 5  |-  ( ( Z  e.  RR+  /\  A. w  e.  A  (
( abs `  (
x  -  w ) )  <  Z  -> 
( abs `  (
( F `  x
)  -  ( F `
 w ) ) )  <  y ) )  ->  E. z  e.  RR+  A. w  e.  A  ( ( abs `  ( x  -  w
) )  <  z  ->  ( abs `  (
( F `  x
)  -  ( F `
 w ) ) )  <  y ) )
143, 11, 13syl2anc 411 . . . 4  |-  ( (
ph  /\  ( x  e.  A  /\  y  e.  RR+ ) )  ->  E. z  e.  RR+  A. w  e.  A  ( ( abs `  ( x  -  w ) )  < 
z  ->  ( abs `  ( ( F `  x )  -  ( F `  w )
) )  <  y
) )
1514ralrimivva 2579 . . 3  |-  ( ph  ->  A. x  e.  A  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( abs `  ( x  -  w
) )  <  z  ->  ( abs `  (
( F `  x
)  -  ( F `
 w ) ) )  <  y ) )
161, 15jca 306 . 2  |-  ( ph  ->  ( F : A --> B  /\  A. x  e.  A  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( abs `  (
x  -  w ) )  <  z  -> 
( abs `  (
( F `  x
)  -  ( F `
 w ) ) )  <  y ) ) )
17 elcncf 14893 . 2  |-  ( ( A  C_  CC  /\  B  C_  CC )  ->  ( F  e.  ( A -cn-> B )  <->  ( F : A --> B  /\  A. x  e.  A  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( abs `  ( x  -  w
) )  <  z  ->  ( abs `  (
( F `  x
)  -  ( F `
 w ) ) )  <  y ) ) ) )
1816, 17syl5ibrcom 157 1  |-  ( ph  ->  ( ( A  C_  CC  /\  B  C_  CC )  ->  F  e.  ( A -cn-> B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    e. wcel 2167   A.wral 2475   E.wrex 2476    C_ wss 3157   class class class wbr 4034   -->wf 5255   ` cfv 5259  (class class class)co 5925   CCcc 7894    < clt 8078    - cmin 8214   RR+crp 9745   abscabs 11179   -cn->ccncf 14890
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-br 4035  df-opab 4096  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-fv 5267  df-ov 5928  df-oprab 5929  df-mpo 5930  df-map 6718  df-cncf 14891
This theorem is referenced by:  elcncf1ii  14900  cncfmptc  14916  cncfmptid  14917  addccncf  14920  negcncf  14925
  Copyright terms: Public domain W3C validator