ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  limccnp2lem Unicode version

Theorem limccnp2lem 14912
Description: Lemma for limccnp2cntop 14913. This is most of the result, expressed in epsilon-delta form, with a large number of hypotheses so that lengthy expressions do not need to be repeated. (Contributed by Jim Kingdon, 9-Nov-2023.)
Hypotheses
Ref Expression
limccnp2.r  |-  ( (
ph  /\  x  e.  A )  ->  R  e.  X )
limccnp2.s  |-  ( (
ph  /\  x  e.  A )  ->  S  e.  Y )
limccnp2.x  |-  ( ph  ->  X  C_  CC )
limccnp2.y  |-  ( ph  ->  Y  C_  CC )
limccnp2cntop.k  |-  K  =  ( MetOpen `  ( abs  o. 
-  ) )
limccnp2.j  |-  J  =  ( ( K  tX  K )t  ( X  X.  Y ) )
limccnp2.c  |-  ( ph  ->  C  e.  ( ( x  e.  A  |->  R ) lim CC  B ) )
limccnp2.d  |-  ( ph  ->  D  e.  ( ( x  e.  A  |->  S ) lim CC  B ) )
limccnp2.h  |-  ( ph  ->  H  e.  ( ( J  CnP  K ) `
 <. C ,  D >. ) )
limccnp2lem.nf  |-  F/ x ph
limccnp2lem.e  |-  ( ph  ->  E  e.  RR+ )
limccnp2lem.j  |-  ( ph  ->  L  e.  RR+ )
limccnp2lem.rs  |-  ( ph  ->  A. r  e.  X  A. s  e.  Y  ( ( ( C ( ( abs  o.  -  )  |`  ( X  X.  X ) ) r )  <  L  /\  ( D ( ( abs  o.  -  )  |`  ( Y  X.  Y
) ) s )  <  L )  -> 
( ( C H D ) ( abs 
o.  -  ) (
r H s ) )  <  E ) )
limccnp2lem.f  |-  ( ph  ->  F  e.  RR+ )
limccnp2lem.fj  |-  ( ph  ->  A. x  e.  A  ( ( x #  B  /\  ( abs `  (
x  -  B ) )  <  F )  ->  ( abs `  ( R  -  C )
)  <  L )
)
limccnp2lem.g  |-  ( ph  ->  G  e.  RR+ )
limccnp2lem.gj  |-  ( ph  ->  A. x  e.  A  ( ( x #  B  /\  ( abs `  (
x  -  B ) )  <  G )  ->  ( abs `  ( S  -  D )
)  <  L )
)
Assertion
Ref Expression
limccnp2lem  |-  ( ph  ->  E. d  e.  RR+  A. x  e.  A  ( ( x #  B  /\  ( abs `  ( x  -  B ) )  <  d )  -> 
( abs `  (
( R H S )  -  ( C H D ) ) )  <  E ) )
Distinct variable groups:    x, B    x, C    x, D    x, H    x, X    x, A    x, Y    A, d    B, d    C, d, r, s    D, d, r, s    E, d, r, s    F, d, x    G, d, x    H, d, r, s    L, r, s    R, d, r, s    S, d, s    X, r, s    Y, r, s
Allowed substitution hints:    ph( x, s, r, d)    A( s, r)    B( s, r)    R( x)    S( x, r)    E( x)    F( s, r)    G( s, r)    J( x, s, r, d)    K( x, s, r, d)    L( x, d)    X( d)    Y( d)

Proof of Theorem limccnp2lem
StepHypRef Expression
1 limccnp2lem.f . . 3  |-  ( ph  ->  F  e.  RR+ )
2 limccnp2lem.g . . 3  |-  ( ph  ->  G  e.  RR+ )
3 rpmincl 11403 . . 3  |-  ( ( F  e.  RR+  /\  G  e.  RR+ )  -> inf ( { F ,  G } ,  RR ,  <  )  e.  RR+ )
41, 2, 3syl2anc 411 . 2  |-  ( ph  -> inf ( { F ,  G } ,  RR ,  <  )  e.  RR+ )
5 limccnp2lem.nf . . 3  |-  F/ x ph
6 limccnp2.j . . . . . . . . . . 11  |-  J  =  ( ( K  tX  K )t  ( X  X.  Y ) )
7 limccnp2cntop.k . . . . . . . . . . . . . 14  |-  K  =  ( MetOpen `  ( abs  o. 
-  ) )
87cntoptopon 14768 . . . . . . . . . . . . 13  |-  K  e.  (TopOn `  CC )
9 txtopon 14498 . . . . . . . . . . . . 13  |-  ( ( K  e.  (TopOn `  CC )  /\  K  e.  (TopOn `  CC )
)  ->  ( K  tX  K )  e.  (TopOn `  ( CC  X.  CC ) ) )
108, 8, 9mp2an 426 . . . . . . . . . . . 12  |-  ( K 
tX  K )  e.  (TopOn `  ( CC  X.  CC ) )
11 limccnp2.x . . . . . . . . . . . . 13  |-  ( ph  ->  X  C_  CC )
12 limccnp2.y . . . . . . . . . . . . 13  |-  ( ph  ->  Y  C_  CC )
13 xpss12 4770 . . . . . . . . . . . . 13  |-  ( ( X  C_  CC  /\  Y  C_  CC )  ->  ( X  X.  Y )  C_  ( CC  X.  CC ) )
1411, 12, 13syl2anc 411 . . . . . . . . . . . 12  |-  ( ph  ->  ( X  X.  Y
)  C_  ( CC  X.  CC ) )
15 resttopon 14407 . . . . . . . . . . . 12  |-  ( ( ( K  tX  K
)  e.  (TopOn `  ( CC  X.  CC ) )  /\  ( X  X.  Y )  C_  ( CC  X.  CC ) )  ->  (
( K  tX  K
)t  ( X  X.  Y
) )  e.  (TopOn `  ( X  X.  Y
) ) )
1610, 14, 15sylancr 414 . . . . . . . . . . 11  |-  ( ph  ->  ( ( K  tX  K )t  ( X  X.  Y ) )  e.  (TopOn `  ( X  X.  Y ) ) )
176, 16eqeltrid 2283 . . . . . . . . . 10  |-  ( ph  ->  J  e.  (TopOn `  ( X  X.  Y
) ) )
188a1i 9 . . . . . . . . . 10  |-  ( ph  ->  K  e.  (TopOn `  CC ) )
19 limccnp2.h . . . . . . . . . 10  |-  ( ph  ->  H  e.  ( ( J  CnP  K ) `
 <. C ,  D >. ) )
20 cnpf2 14443 . . . . . . . . . 10  |-  ( ( J  e.  (TopOn `  ( X  X.  Y
) )  /\  K  e.  (TopOn `  CC )  /\  H  e.  (
( J  CnP  K
) `  <. C ,  D >. ) )  ->  H : ( X  X.  Y ) --> CC )
2117, 18, 19, 20syl3anc 1249 . . . . . . . . 9  |-  ( ph  ->  H : ( X  X.  Y ) --> CC )
2221ad2antrr 488 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  A )  /\  (
x #  B  /\  ( abs `  ( x  -  B ) )  < inf ( { F ,  G } ,  RR ,  <  ) ) )  ->  H : ( X  X.  Y ) --> CC )
237cntoptop 14769 . . . . . . . . . . . . . . . . 17  |-  K  e. 
Top
2423a1i 9 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  K  e.  Top )
25 txtop 14496 . . . . . . . . . . . . . . . . 17  |-  ( ( K  e.  Top  /\  K  e.  Top )  ->  ( K  tX  K
)  e.  Top )
2623, 24, 25sylancr 414 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( K  tX  K
)  e.  Top )
27 cnex 8003 . . . . . . . . . . . . . . . . . . 19  |-  CC  e.  _V
2827a1i 9 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  CC  e.  _V )
2928, 11ssexd 4173 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  X  e.  _V )
3028, 12ssexd 4173 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  Y  e.  _V )
31 xpexg 4777 . . . . . . . . . . . . . . . . 17  |-  ( ( X  e.  _V  /\  Y  e.  _V )  ->  ( X  X.  Y
)  e.  _V )
3229, 30, 31syl2anc 411 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( X  X.  Y
)  e.  _V )
33 resttop 14406 . . . . . . . . . . . . . . . 16  |-  ( ( ( K  tX  K
)  e.  Top  /\  ( X  X.  Y
)  e.  _V )  ->  ( ( K  tX  K )t  ( X  X.  Y ) )  e. 
Top )
3426, 32, 33syl2anc 411 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( K  tX  K )t  ( X  X.  Y ) )  e. 
Top )
356, 34eqeltrid 2283 . . . . . . . . . . . . . 14  |-  ( ph  ->  J  e.  Top )
36 toptopon2 14255 . . . . . . . . . . . . . 14  |-  ( J  e.  Top  <->  J  e.  (TopOn `  U. J ) )
3735, 36sylib 122 . . . . . . . . . . . . 13  |-  ( ph  ->  J  e.  (TopOn `  U. J ) )
38 cnprcl2k 14442 . . . . . . . . . . . . 13  |-  ( ( J  e.  (TopOn `  U. J )  /\  K  e.  Top  /\  H  e.  ( ( J  CnP  K ) `  <. C ,  D >. ) )  ->  <. C ,  D >.  e. 
U. J )
3937, 24, 19, 38syl3anc 1249 . . . . . . . . . . . 12  |-  ( ph  -> 
<. C ,  D >.  e. 
U. J )
40 toponuni 14251 . . . . . . . . . . . . 13  |-  ( J  e.  (TopOn `  ( X  X.  Y ) )  ->  ( X  X.  Y )  =  U. J )
4117, 40syl 14 . . . . . . . . . . . 12  |-  ( ph  ->  ( X  X.  Y
)  =  U. J
)
4239, 41eleqtrrd 2276 . . . . . . . . . . 11  |-  ( ph  -> 
<. C ,  D >.  e.  ( X  X.  Y
) )
43 opelxp 4693 . . . . . . . . . . 11  |-  ( <. C ,  D >.  e.  ( X  X.  Y
)  <->  ( C  e.  X  /\  D  e.  Y ) )
4442, 43sylib 122 . . . . . . . . . 10  |-  ( ph  ->  ( C  e.  X  /\  D  e.  Y
) )
4544simpld 112 . . . . . . . . 9  |-  ( ph  ->  C  e.  X )
4645ad2antrr 488 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  A )  /\  (
x #  B  /\  ( abs `  ( x  -  B ) )  < inf ( { F ,  G } ,  RR ,  <  ) ) )  ->  C  e.  X )
4744simprd 114 . . . . . . . . 9  |-  ( ph  ->  D  e.  Y )
4847ad2antrr 488 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  A )  /\  (
x #  B  /\  ( abs `  ( x  -  B ) )  < inf ( { F ,  G } ,  RR ,  <  ) ) )  ->  D  e.  Y )
4922, 46, 48fovcdmd 6068 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  A )  /\  (
x #  B  /\  ( abs `  ( x  -  B ) )  < inf ( { F ,  G } ,  RR ,  <  ) ) )  -> 
( C H D )  e.  CC )
50 simpl 109 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  A )  /\  (
x #  B  /\  ( abs `  ( x  -  B ) )  < inf ( { F ,  G } ,  RR ,  <  ) ) )  -> 
( ph  /\  x  e.  A ) )
51 limccnp2.r . . . . . . . . 9  |-  ( (
ph  /\  x  e.  A )  ->  R  e.  X )
5250, 51syl 14 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  A )  /\  (
x #  B  /\  ( abs `  ( x  -  B ) )  < inf ( { F ,  G } ,  RR ,  <  ) ) )  ->  R  e.  X )
53 limccnp2.s . . . . . . . . 9  |-  ( (
ph  /\  x  e.  A )  ->  S  e.  Y )
5450, 53syl 14 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  A )  /\  (
x #  B  /\  ( abs `  ( x  -  B ) )  < inf ( { F ,  G } ,  RR ,  <  ) ) )  ->  S  e.  Y )
5522, 52, 54fovcdmd 6068 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  A )  /\  (
x #  B  /\  ( abs `  ( x  -  B ) )  < inf ( { F ,  G } ,  RR ,  <  ) ) )  -> 
( R H S )  e.  CC )
56 eqid 2196 . . . . . . . 8  |-  ( abs 
o.  -  )  =  ( abs  o.  -  )
5756cnmetdval 14765 . . . . . . 7  |-  ( ( ( C H D )  e.  CC  /\  ( R H S )  e.  CC )  -> 
( ( C H D ) ( abs 
o.  -  ) ( R H S ) )  =  ( abs `  (
( C H D )  -  ( R H S ) ) ) )
5849, 55, 57syl2anc 411 . . . . . 6  |-  ( ( ( ph  /\  x  e.  A )  /\  (
x #  B  /\  ( abs `  ( x  -  B ) )  < inf ( { F ,  G } ,  RR ,  <  ) ) )  -> 
( ( C H D ) ( abs 
o.  -  ) ( R H S ) )  =  ( abs `  (
( C H D )  -  ( R H S ) ) ) )
5949, 55abssubd 11358 . . . . . 6  |-  ( ( ( ph  /\  x  e.  A )  /\  (
x #  B  /\  ( abs `  ( x  -  B ) )  < inf ( { F ,  G } ,  RR ,  <  ) ) )  -> 
( abs `  (
( C H D )  -  ( R H S ) ) )  =  ( abs `  ( ( R H S )  -  ( C H D ) ) ) )
6058, 59eqtrd 2229 . . . . 5  |-  ( ( ( ph  /\  x  e.  A )  /\  (
x #  B  /\  ( abs `  ( x  -  B ) )  < inf ( { F ,  G } ,  RR ,  <  ) ) )  -> 
( ( C H D ) ( abs 
o.  -  ) ( R H S ) )  =  ( abs `  (
( R H S )  -  ( C H D ) ) ) )
6152, 54jca 306 . . . . . 6  |-  ( ( ( ph  /\  x  e.  A )  /\  (
x #  B  /\  ( abs `  ( x  -  B ) )  < inf ( { F ,  G } ,  RR ,  <  ) ) )  -> 
( R  e.  X  /\  S  e.  Y
) )
62 limccnp2lem.rs . . . . . . 7  |-  ( ph  ->  A. r  e.  X  A. s  e.  Y  ( ( ( C ( ( abs  o.  -  )  |`  ( X  X.  X ) ) r )  <  L  /\  ( D ( ( abs  o.  -  )  |`  ( Y  X.  Y
) ) s )  <  L )  -> 
( ( C H D ) ( abs 
o.  -  ) (
r H s ) )  <  E ) )
6362ad2antrr 488 . . . . . 6  |-  ( ( ( ph  /\  x  e.  A )  /\  (
x #  B  /\  ( abs `  ( x  -  B ) )  < inf ( { F ,  G } ,  RR ,  <  ) ) )  ->  A. r  e.  X  A. s  e.  Y  ( ( ( C ( ( abs  o.  -  )  |`  ( X  X.  X ) ) r )  <  L  /\  ( D ( ( abs  o.  -  )  |`  ( Y  X.  Y
) ) s )  <  L )  -> 
( ( C H D ) ( abs 
o.  -  ) (
r H s ) )  <  E ) )
6446, 52ovresd 6064 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  A )  /\  (
x #  B  /\  ( abs `  ( x  -  B ) )  < inf ( { F ,  G } ,  RR ,  <  ) ) )  -> 
( C ( ( abs  o.  -  )  |`  ( X  X.  X
) ) R )  =  ( C ( abs  o.  -  ) R ) )
6511, 45sseldd 3184 . . . . . . . . . . 11  |-  ( ph  ->  C  e.  CC )
6665ad2antrr 488 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  A )  /\  (
x #  B  /\  ( abs `  ( x  -  B ) )  < inf ( { F ,  G } ,  RR ,  <  ) ) )  ->  C  e.  CC )
6711ad2antrr 488 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  A )  /\  (
x #  B  /\  ( abs `  ( x  -  B ) )  < inf ( { F ,  G } ,  RR ,  <  ) ) )  ->  X  C_  CC )
6867, 52sseldd 3184 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  A )  /\  (
x #  B  /\  ( abs `  ( x  -  B ) )  < inf ( { F ,  G } ,  RR ,  <  ) ) )  ->  R  e.  CC )
6956cnmetdval 14765 . . . . . . . . . 10  |-  ( ( C  e.  CC  /\  R  e.  CC )  ->  ( C ( abs 
o.  -  ) R
)  =  ( abs `  ( C  -  R
) ) )
7066, 68, 69syl2anc 411 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  A )  /\  (
x #  B  /\  ( abs `  ( x  -  B ) )  < inf ( { F ,  G } ,  RR ,  <  ) ) )  -> 
( C ( abs 
o.  -  ) R
)  =  ( abs `  ( C  -  R
) ) )
7166, 68abssubd 11358 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  A )  /\  (
x #  B  /\  ( abs `  ( x  -  B ) )  < inf ( { F ,  G } ,  RR ,  <  ) ) )  -> 
( abs `  ( C  -  R )
)  =  ( abs `  ( R  -  C
) ) )
7264, 70, 713eqtrd 2233 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  A )  /\  (
x #  B  /\  ( abs `  ( x  -  B ) )  < inf ( { F ,  G } ,  RR ,  <  ) ) )  -> 
( C ( ( abs  o.  -  )  |`  ( X  X.  X
) ) R )  =  ( abs `  ( R  -  C )
) )
73 simprl 529 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  A )  /\  (
x #  B  /\  ( abs `  ( x  -  B ) )  < inf ( { F ,  G } ,  RR ,  <  ) ) )  ->  x #  B )
7451ex 115 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( x  e.  A  ->  R  e.  X ) )
755, 74ralrimi 2568 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  A. x  e.  A  R  e.  X )
76 dmmptg 5167 . . . . . . . . . . . . . . . . 17  |-  ( A. x  e.  A  R  e.  X  ->  dom  (
x  e.  A  |->  R )  =  A )
7775, 76syl 14 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  dom  ( x  e.  A  |->  R )  =  A )
78 limccnp2.c . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  C  e.  ( ( x  e.  A  |->  R ) lim CC  B ) )
79 limcrcl 14894 . . . . . . . . . . . . . . . . . 18  |-  ( C  e.  ( ( x  e.  A  |->  R ) lim
CC  B )  -> 
( ( x  e.  A  |->  R ) : dom  ( x  e.  A  |->  R ) --> CC 
/\  dom  ( x  e.  A  |->  R ) 
C_  CC  /\  B  e.  CC ) )
8078, 79syl 14 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( ( x  e.  A  |->  R ) : dom  ( x  e.  A  |->  R ) --> CC 
/\  dom  ( x  e.  A  |->  R ) 
C_  CC  /\  B  e.  CC ) )
8180simp2d 1012 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  dom  ( x  e.  A  |->  R )  C_  CC )
8277, 81eqsstrrd 3220 . . . . . . . . . . . . . . 15  |-  ( ph  ->  A  C_  CC )
8382ad2antrr 488 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  A )  /\  (
x #  B  /\  ( abs `  ( x  -  B ) )  < inf ( { F ,  G } ,  RR ,  <  ) ) )  ->  A  C_  CC )
8450simprd 114 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  A )  /\  (
x #  B  /\  ( abs `  ( x  -  B ) )  < inf ( { F ,  G } ,  RR ,  <  ) ) )  ->  x  e.  A )
8583, 84sseldd 3184 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  A )  /\  (
x #  B  /\  ( abs `  ( x  -  B ) )  < inf ( { F ,  G } ,  RR ,  <  ) ) )  ->  x  e.  CC )
8680simp3d 1013 . . . . . . . . . . . . . 14  |-  ( ph  ->  B  e.  CC )
8786ad2antrr 488 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  A )  /\  (
x #  B  /\  ( abs `  ( x  -  B ) )  < inf ( { F ,  G } ,  RR ,  <  ) ) )  ->  B  e.  CC )
8885, 87subcld 8337 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  A )  /\  (
x #  B  /\  ( abs `  ( x  -  B ) )  < inf ( { F ,  G } ,  RR ,  <  ) ) )  -> 
( x  -  B
)  e.  CC )
8988abscld 11346 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  A )  /\  (
x #  B  /\  ( abs `  ( x  -  B ) )  < inf ( { F ,  G } ,  RR ,  <  ) ) )  -> 
( abs `  (
x  -  B ) )  e.  RR )
901ad2antrr 488 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  A )  /\  (
x #  B  /\  ( abs `  ( x  -  B ) )  < inf ( { F ,  G } ,  RR ,  <  ) ) )  ->  F  e.  RR+ )
9190rpred 9771 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  A )  /\  (
x #  B  /\  ( abs `  ( x  -  B ) )  < inf ( { F ,  G } ,  RR ,  <  ) ) )  ->  F  e.  RR )
922ad2antrr 488 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  A )  /\  (
x #  B  /\  ( abs `  ( x  -  B ) )  < inf ( { F ,  G } ,  RR ,  <  ) ) )  ->  G  e.  RR+ )
9392rpred 9771 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  A )  /\  (
x #  B  /\  ( abs `  ( x  -  B ) )  < inf ( { F ,  G } ,  RR ,  <  ) ) )  ->  G  e.  RR )
94 mincl 11396 . . . . . . . . . . . 12  |-  ( ( F  e.  RR  /\  G  e.  RR )  -> inf ( { F ,  G } ,  RR ,  <  )  e.  RR )
9591, 93, 94syl2anc 411 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  A )  /\  (
x #  B  /\  ( abs `  ( x  -  B ) )  < inf ( { F ,  G } ,  RR ,  <  ) ) )  -> inf ( { F ,  G } ,  RR ,  <  )  e.  RR )
96 simprr 531 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  A )  /\  (
x #  B  /\  ( abs `  ( x  -  B ) )  < inf ( { F ,  G } ,  RR ,  <  ) ) )  -> 
( abs `  (
x  -  B ) )  < inf ( { F ,  G } ,  RR ,  <  )
)
97 min1inf 11397 . . . . . . . . . . . 12  |-  ( ( F  e.  RR  /\  G  e.  RR )  -> inf ( { F ,  G } ,  RR ,  <  )  <_  F )
9891, 93, 97syl2anc 411 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  A )  /\  (
x #  B  /\  ( abs `  ( x  -  B ) )  < inf ( { F ,  G } ,  RR ,  <  ) ) )  -> inf ( { F ,  G } ,  RR ,  <  )  <_  F )
9989, 95, 91, 96, 98ltletrd 8450 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  A )  /\  (
x #  B  /\  ( abs `  ( x  -  B ) )  < inf ( { F ,  G } ,  RR ,  <  ) ) )  -> 
( abs `  (
x  -  B ) )  <  F )
10073, 99jca 306 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  A )  /\  (
x #  B  /\  ( abs `  ( x  -  B ) )  < inf ( { F ,  G } ,  RR ,  <  ) ) )  -> 
( x #  B  /\  ( abs `  ( x  -  B ) )  <  F ) )
101 limccnp2lem.fj . . . . . . . . . 10  |-  ( ph  ->  A. x  e.  A  ( ( x #  B  /\  ( abs `  (
x  -  B ) )  <  F )  ->  ( abs `  ( R  -  C )
)  <  L )
)
102101r19.21bi 2585 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  A )  ->  (
( x #  B  /\  ( abs `  ( x  -  B ) )  <  F )  -> 
( abs `  ( R  -  C )
)  <  L )
)
10350, 100, 102sylc 62 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  A )  /\  (
x #  B  /\  ( abs `  ( x  -  B ) )  < inf ( { F ,  G } ,  RR ,  <  ) ) )  -> 
( abs `  ( R  -  C )
)  <  L )
10472, 103eqbrtrd 4055 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  A )  /\  (
x #  B  /\  ( abs `  ( x  -  B ) )  < inf ( { F ,  G } ,  RR ,  <  ) ) )  -> 
( C ( ( abs  o.  -  )  |`  ( X  X.  X
) ) R )  <  L )
10548, 54ovresd 6064 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  A )  /\  (
x #  B  /\  ( abs `  ( x  -  B ) )  < inf ( { F ,  G } ,  RR ,  <  ) ) )  -> 
( D ( ( abs  o.  -  )  |`  ( Y  X.  Y
) ) S )  =  ( D ( abs  o.  -  ) S ) )
10612, 47sseldd 3184 . . . . . . . . . . 11  |-  ( ph  ->  D  e.  CC )
107106ad2antrr 488 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  A )  /\  (
x #  B  /\  ( abs `  ( x  -  B ) )  < inf ( { F ,  G } ,  RR ,  <  ) ) )  ->  D  e.  CC )
10812ad2antrr 488 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  A )  /\  (
x #  B  /\  ( abs `  ( x  -  B ) )  < inf ( { F ,  G } ,  RR ,  <  ) ) )  ->  Y  C_  CC )
109108, 54sseldd 3184 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  A )  /\  (
x #  B  /\  ( abs `  ( x  -  B ) )  < inf ( { F ,  G } ,  RR ,  <  ) ) )  ->  S  e.  CC )
11056cnmetdval 14765 . . . . . . . . . 10  |-  ( ( D  e.  CC  /\  S  e.  CC )  ->  ( D ( abs 
o.  -  ) S
)  =  ( abs `  ( D  -  S
) ) )
111107, 109, 110syl2anc 411 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  A )  /\  (
x #  B  /\  ( abs `  ( x  -  B ) )  < inf ( { F ,  G } ,  RR ,  <  ) ) )  -> 
( D ( abs 
o.  -  ) S
)  =  ( abs `  ( D  -  S
) ) )
112107, 109abssubd 11358 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  A )  /\  (
x #  B  /\  ( abs `  ( x  -  B ) )  < inf ( { F ,  G } ,  RR ,  <  ) ) )  -> 
( abs `  ( D  -  S )
)  =  ( abs `  ( S  -  D
) ) )
113105, 111, 1123eqtrd 2233 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  A )  /\  (
x #  B  /\  ( abs `  ( x  -  B ) )  < inf ( { F ,  G } ,  RR ,  <  ) ) )  -> 
( D ( ( abs  o.  -  )  |`  ( Y  X.  Y
) ) S )  =  ( abs `  ( S  -  D )
) )
114 min2inf 11398 . . . . . . . . . . . 12  |-  ( ( F  e.  RR  /\  G  e.  RR )  -> inf ( { F ,  G } ,  RR ,  <  )  <_  G )
11591, 93, 114syl2anc 411 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  A )  /\  (
x #  B  /\  ( abs `  ( x  -  B ) )  < inf ( { F ,  G } ,  RR ,  <  ) ) )  -> inf ( { F ,  G } ,  RR ,  <  )  <_  G )
11689, 95, 93, 96, 115ltletrd 8450 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  A )  /\  (
x #  B  /\  ( abs `  ( x  -  B ) )  < inf ( { F ,  G } ,  RR ,  <  ) ) )  -> 
( abs `  (
x  -  B ) )  <  G )
11773, 116jca 306 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  A )  /\  (
x #  B  /\  ( abs `  ( x  -  B ) )  < inf ( { F ,  G } ,  RR ,  <  ) ) )  -> 
( x #  B  /\  ( abs `  ( x  -  B ) )  <  G ) )
118 limccnp2lem.gj . . . . . . . . . 10  |-  ( ph  ->  A. x  e.  A  ( ( x #  B  /\  ( abs `  (
x  -  B ) )  <  G )  ->  ( abs `  ( S  -  D )
)  <  L )
)
119118r19.21bi 2585 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  A )  ->  (
( x #  B  /\  ( abs `  ( x  -  B ) )  <  G )  -> 
( abs `  ( S  -  D )
)  <  L )
)
12050, 117, 119sylc 62 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  A )  /\  (
x #  B  /\  ( abs `  ( x  -  B ) )  < inf ( { F ,  G } ,  RR ,  <  ) ) )  -> 
( abs `  ( S  -  D )
)  <  L )
121113, 120eqbrtrd 4055 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  A )  /\  (
x #  B  /\  ( abs `  ( x  -  B ) )  < inf ( { F ,  G } ,  RR ,  <  ) ) )  -> 
( D ( ( abs  o.  -  )  |`  ( Y  X.  Y
) ) S )  <  L )
122104, 121jca 306 . . . . . 6  |-  ( ( ( ph  /\  x  e.  A )  /\  (
x #  B  /\  ( abs `  ( x  -  B ) )  < inf ( { F ,  G } ,  RR ,  <  ) ) )  -> 
( ( C ( ( abs  o.  -  )  |`  ( X  X.  X ) ) R )  <  L  /\  ( D ( ( abs 
o.  -  )  |`  ( Y  X.  Y ) ) S )  <  L
) )
123 oveq2 5930 . . . . . . . . . 10  |-  ( r  =  R  ->  ( C ( ( abs 
o.  -  )  |`  ( X  X.  X ) ) r )  =  ( C ( ( abs 
o.  -  )  |`  ( X  X.  X ) ) R ) )
124123breq1d 4043 . . . . . . . . 9  |-  ( r  =  R  ->  (
( C ( ( abs  o.  -  )  |`  ( X  X.  X
) ) r )  <  L  <->  ( C
( ( abs  o.  -  )  |`  ( X  X.  X ) ) R )  <  L
) )
125124anbi1d 465 . . . . . . . 8  |-  ( r  =  R  ->  (
( ( C ( ( abs  o.  -  )  |`  ( X  X.  X ) ) r )  <  L  /\  ( D ( ( abs 
o.  -  )  |`  ( Y  X.  Y ) ) s )  <  L
)  <->  ( ( C ( ( abs  o.  -  )  |`  ( X  X.  X ) ) R )  <  L  /\  ( D ( ( abs  o.  -  )  |`  ( Y  X.  Y
) ) s )  <  L ) ) )
126 oveq1 5929 . . . . . . . . . 10  |-  ( r  =  R  ->  (
r H s )  =  ( R H s ) )
127126oveq2d 5938 . . . . . . . . 9  |-  ( r  =  R  ->  (
( C H D ) ( abs  o.  -  ) ( r H s ) )  =  ( ( C H D ) ( abs  o.  -  )
( R H s ) ) )
128127breq1d 4043 . . . . . . . 8  |-  ( r  =  R  ->  (
( ( C H D ) ( abs 
o.  -  ) (
r H s ) )  <  E  <->  ( ( C H D ) ( abs  o.  -  )
( R H s ) )  <  E
) )
129125, 128imbi12d 234 . . . . . . 7  |-  ( r  =  R  ->  (
( ( ( C ( ( abs  o.  -  )  |`  ( X  X.  X ) ) r )  <  L  /\  ( D ( ( abs  o.  -  )  |`  ( Y  X.  Y
) ) s )  <  L )  -> 
( ( C H D ) ( abs 
o.  -  ) (
r H s ) )  <  E )  <-> 
( ( ( C ( ( abs  o.  -  )  |`  ( X  X.  X ) ) R )  <  L  /\  ( D ( ( abs  o.  -  )  |`  ( Y  X.  Y
) ) s )  <  L )  -> 
( ( C H D ) ( abs 
o.  -  ) ( R H s ) )  <  E ) ) )
130 oveq2 5930 . . . . . . . . . 10  |-  ( s  =  S  ->  ( D ( ( abs 
o.  -  )  |`  ( Y  X.  Y ) ) s )  =  ( D ( ( abs 
o.  -  )  |`  ( Y  X.  Y ) ) S ) )
131130breq1d 4043 . . . . . . . . 9  |-  ( s  =  S  ->  (
( D ( ( abs  o.  -  )  |`  ( Y  X.  Y
) ) s )  <  L  <->  ( D
( ( abs  o.  -  )  |`  ( Y  X.  Y ) ) S )  <  L
) )
132131anbi2d 464 . . . . . . . 8  |-  ( s  =  S  ->  (
( ( C ( ( abs  o.  -  )  |`  ( X  X.  X ) ) R )  <  L  /\  ( D ( ( abs 
o.  -  )  |`  ( Y  X.  Y ) ) s )  <  L
)  <->  ( ( C ( ( abs  o.  -  )  |`  ( X  X.  X ) ) R )  <  L  /\  ( D ( ( abs  o.  -  )  |`  ( Y  X.  Y
) ) S )  <  L ) ) )
133 oveq2 5930 . . . . . . . . . 10  |-  ( s  =  S  ->  ( R H s )  =  ( R H S ) )
134133oveq2d 5938 . . . . . . . . 9  |-  ( s  =  S  ->  (
( C H D ) ( abs  o.  -  ) ( R H s ) )  =  ( ( C H D ) ( abs  o.  -  )
( R H S ) ) )
135134breq1d 4043 . . . . . . . 8  |-  ( s  =  S  ->  (
( ( C H D ) ( abs 
o.  -  ) ( R H s ) )  <  E  <->  ( ( C H D ) ( abs  o.  -  )
( R H S ) )  <  E
) )
136132, 135imbi12d 234 . . . . . . 7  |-  ( s  =  S  ->  (
( ( ( C ( ( abs  o.  -  )  |`  ( X  X.  X ) ) R )  <  L  /\  ( D ( ( abs  o.  -  )  |`  ( Y  X.  Y
) ) s )  <  L )  -> 
( ( C H D ) ( abs 
o.  -  ) ( R H s ) )  <  E )  <->  ( (
( C ( ( abs  o.  -  )  |`  ( X  X.  X
) ) R )  <  L  /\  ( D ( ( abs 
o.  -  )  |`  ( Y  X.  Y ) ) S )  <  L
)  ->  ( ( C H D ) ( abs  o.  -  )
( R H S ) )  <  E
) ) )
137129, 136rspc2v 2881 . . . . . 6  |-  ( ( R  e.  X  /\  S  e.  Y )  ->  ( A. r  e.  X  A. s  e.  Y  ( ( ( C ( ( abs 
o.  -  )  |`  ( X  X.  X ) ) r )  <  L  /\  ( D ( ( abs  o.  -  )  |`  ( Y  X.  Y
) ) s )  <  L )  -> 
( ( C H D ) ( abs 
o.  -  ) (
r H s ) )  <  E )  ->  ( ( ( C ( ( abs 
o.  -  )  |`  ( X  X.  X ) ) R )  <  L  /\  ( D ( ( abs  o.  -  )  |`  ( Y  X.  Y
) ) S )  <  L )  -> 
( ( C H D ) ( abs 
o.  -  ) ( R H S ) )  <  E ) ) )
13861, 63, 122, 137syl3c 63 . . . . 5  |-  ( ( ( ph  /\  x  e.  A )  /\  (
x #  B  /\  ( abs `  ( x  -  B ) )  < inf ( { F ,  G } ,  RR ,  <  ) ) )  -> 
( ( C H D ) ( abs 
o.  -  ) ( R H S ) )  <  E )
13960, 138eqbrtrrd 4057 . . . 4  |-  ( ( ( ph  /\  x  e.  A )  /\  (
x #  B  /\  ( abs `  ( x  -  B ) )  < inf ( { F ,  G } ,  RR ,  <  ) ) )  -> 
( abs `  (
( R H S )  -  ( C H D ) ) )  <  E )
140139exp31 364 . . 3  |-  ( ph  ->  ( x  e.  A  ->  ( ( x #  B  /\  ( abs `  (
x  -  B ) )  < inf ( { F ,  G } ,  RR ,  <  )
)  ->  ( abs `  ( ( R H S )  -  ( C H D ) ) )  <  E ) ) )
1415, 140ralrimi 2568 . 2  |-  ( ph  ->  A. x  e.  A  ( ( x #  B  /\  ( abs `  (
x  -  B ) )  < inf ( { F ,  G } ,  RR ,  <  )
)  ->  ( abs `  ( ( R H S )  -  ( C H D ) ) )  <  E ) )
142 breq2 4037 . . . 4  |-  ( d  = inf ( { F ,  G } ,  RR ,  <  )  ->  (
( abs `  (
x  -  B ) )  <  d  <->  ( abs `  ( x  -  B
) )  < inf ( { F ,  G } ,  RR ,  <  )
) )
143142anbi2d 464 . . 3  |-  ( d  = inf ( { F ,  G } ,  RR ,  <  )  ->  (
( x #  B  /\  ( abs `  ( x  -  B ) )  <  d )  <->  ( x #  B  /\  ( abs `  (
x  -  B ) )  < inf ( { F ,  G } ,  RR ,  <  )
) ) )
144143rspceaimv 2876 . 2  |-  ( (inf ( { F ,  G } ,  RR ,  <  )  e.  RR+  /\  A. x  e.  A  (
( x #  B  /\  ( abs `  ( x  -  B ) )  < inf ( { F ,  G } ,  RR ,  <  ) )  -> 
( abs `  (
( R H S )  -  ( C H D ) ) )  <  E ) )  ->  E. d  e.  RR+  A. x  e.  A  ( ( x #  B  /\  ( abs `  ( x  -  B
) )  <  d
)  ->  ( abs `  ( ( R H S )  -  ( C H D ) ) )  <  E ) )
1454, 141, 144syl2anc 411 1  |-  ( ph  ->  E. d  e.  RR+  A. x  e.  A  ( ( x #  B  /\  ( abs `  ( x  -  B ) )  <  d )  -> 
( abs `  (
( R H S )  -  ( C H D ) ) )  <  E ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 980    = wceq 1364   F/wnf 1474    e. wcel 2167   A.wral 2475   E.wrex 2476   _Vcvv 2763    C_ wss 3157   {cpr 3623   <.cop 3625   U.cuni 3839   class class class wbr 4033    |-> cmpt 4094    X. cxp 4661   dom cdm 4663    |` cres 4665    o. ccom 4667   -->wf 5254   ` cfv 5258  (class class class)co 5922  infcinf 7049   CCcc 7877   RRcr 7878    < clt 8061    <_ cle 8062    - cmin 8197   # cap 8608   RR+crp 9728   abscabs 11162   ↾t crest 12910   MetOpencmopn 14097   Topctop 14233  TopOnctopon 14246    CnP ccnp 14422    tX ctx 14488   lim CC climc 14890
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996  ax-pre-mulext 7997  ax-arch 7998  ax-caucvg 7999
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-po 4331  df-iso 4332  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-isom 5267  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-frec 6449  df-map 6709  df-pm 6710  df-sup 7050  df-inf 7051  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-reap 8602  df-ap 8609  df-div 8700  df-inn 8991  df-2 9049  df-3 9050  df-4 9051  df-n0 9250  df-z 9327  df-uz 9602  df-q 9694  df-rp 9729  df-xneg 9847  df-xadd 9848  df-seqfrec 10540  df-exp 10631  df-cj 11007  df-re 11008  df-im 11009  df-rsqrt 11163  df-abs 11164  df-rest 12912  df-topgen 12931  df-psmet 14099  df-xmet 14100  df-met 14101  df-bl 14102  df-mopn 14103  df-top 14234  df-topon 14247  df-bases 14279  df-cnp 14425  df-tx 14489  df-limced 14892
This theorem is referenced by:  limccnp2cntop  14913
  Copyright terms: Public domain W3C validator