ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  limccnp2lem Unicode version

Theorem limccnp2lem 14830
Description: Lemma for limccnp2cntop 14831. This is most of the result, expressed in epsilon-delta form, with a large number of hypotheses so that lengthy expressions do not need to be repeated. (Contributed by Jim Kingdon, 9-Nov-2023.)
Hypotheses
Ref Expression
limccnp2.r  |-  ( (
ph  /\  x  e.  A )  ->  R  e.  X )
limccnp2.s  |-  ( (
ph  /\  x  e.  A )  ->  S  e.  Y )
limccnp2.x  |-  ( ph  ->  X  C_  CC )
limccnp2.y  |-  ( ph  ->  Y  C_  CC )
limccnp2cntop.k  |-  K  =  ( MetOpen `  ( abs  o. 
-  ) )
limccnp2.j  |-  J  =  ( ( K  tX  K )t  ( X  X.  Y ) )
limccnp2.c  |-  ( ph  ->  C  e.  ( ( x  e.  A  |->  R ) lim CC  B ) )
limccnp2.d  |-  ( ph  ->  D  e.  ( ( x  e.  A  |->  S ) lim CC  B ) )
limccnp2.h  |-  ( ph  ->  H  e.  ( ( J  CnP  K ) `
 <. C ,  D >. ) )
limccnp2lem.nf  |-  F/ x ph
limccnp2lem.e  |-  ( ph  ->  E  e.  RR+ )
limccnp2lem.j  |-  ( ph  ->  L  e.  RR+ )
limccnp2lem.rs  |-  ( ph  ->  A. r  e.  X  A. s  e.  Y  ( ( ( C ( ( abs  o.  -  )  |`  ( X  X.  X ) ) r )  <  L  /\  ( D ( ( abs  o.  -  )  |`  ( Y  X.  Y
) ) s )  <  L )  -> 
( ( C H D ) ( abs 
o.  -  ) (
r H s ) )  <  E ) )
limccnp2lem.f  |-  ( ph  ->  F  e.  RR+ )
limccnp2lem.fj  |-  ( ph  ->  A. x  e.  A  ( ( x #  B  /\  ( abs `  (
x  -  B ) )  <  F )  ->  ( abs `  ( R  -  C )
)  <  L )
)
limccnp2lem.g  |-  ( ph  ->  G  e.  RR+ )
limccnp2lem.gj  |-  ( ph  ->  A. x  e.  A  ( ( x #  B  /\  ( abs `  (
x  -  B ) )  <  G )  ->  ( abs `  ( S  -  D )
)  <  L )
)
Assertion
Ref Expression
limccnp2lem  |-  ( ph  ->  E. d  e.  RR+  A. x  e.  A  ( ( x #  B  /\  ( abs `  ( x  -  B ) )  <  d )  -> 
( abs `  (
( R H S )  -  ( C H D ) ) )  <  E ) )
Distinct variable groups:    x, B    x, C    x, D    x, H    x, X    x, A    x, Y    A, d    B, d    C, d, r, s    D, d, r, s    E, d, r, s    F, d, x    G, d, x    H, d, r, s    L, r, s    R, d, r, s    S, d, s    X, r, s    Y, r, s
Allowed substitution hints:    ph( x, s, r, d)    A( s, r)    B( s, r)    R( x)    S( x, r)    E( x)    F( s, r)    G( s, r)    J( x, s, r, d)    K( x, s, r, d)    L( x, d)    X( d)    Y( d)

Proof of Theorem limccnp2lem
StepHypRef Expression
1 limccnp2lem.f . . 3  |-  ( ph  ->  F  e.  RR+ )
2 limccnp2lem.g . . 3  |-  ( ph  ->  G  e.  RR+ )
3 rpmincl 11381 . . 3  |-  ( ( F  e.  RR+  /\  G  e.  RR+ )  -> inf ( { F ,  G } ,  RR ,  <  )  e.  RR+ )
41, 2, 3syl2anc 411 . 2  |-  ( ph  -> inf ( { F ,  G } ,  RR ,  <  )  e.  RR+ )
5 limccnp2lem.nf . . 3  |-  F/ x ph
6 limccnp2.j . . . . . . . . . . 11  |-  J  =  ( ( K  tX  K )t  ( X  X.  Y ) )
7 limccnp2cntop.k . . . . . . . . . . . . . 14  |-  K  =  ( MetOpen `  ( abs  o. 
-  ) )
87cntoptopon 14700 . . . . . . . . . . . . 13  |-  K  e.  (TopOn `  CC )
9 txtopon 14430 . . . . . . . . . . . . 13  |-  ( ( K  e.  (TopOn `  CC )  /\  K  e.  (TopOn `  CC )
)  ->  ( K  tX  K )  e.  (TopOn `  ( CC  X.  CC ) ) )
108, 8, 9mp2an 426 . . . . . . . . . . . 12  |-  ( K 
tX  K )  e.  (TopOn `  ( CC  X.  CC ) )
11 limccnp2.x . . . . . . . . . . . . 13  |-  ( ph  ->  X  C_  CC )
12 limccnp2.y . . . . . . . . . . . . 13  |-  ( ph  ->  Y  C_  CC )
13 xpss12 4766 . . . . . . . . . . . . 13  |-  ( ( X  C_  CC  /\  Y  C_  CC )  ->  ( X  X.  Y )  C_  ( CC  X.  CC ) )
1411, 12, 13syl2anc 411 . . . . . . . . . . . 12  |-  ( ph  ->  ( X  X.  Y
)  C_  ( CC  X.  CC ) )
15 resttopon 14339 . . . . . . . . . . . 12  |-  ( ( ( K  tX  K
)  e.  (TopOn `  ( CC  X.  CC ) )  /\  ( X  X.  Y )  C_  ( CC  X.  CC ) )  ->  (
( K  tX  K
)t  ( X  X.  Y
) )  e.  (TopOn `  ( X  X.  Y
) ) )
1610, 14, 15sylancr 414 . . . . . . . . . . 11  |-  ( ph  ->  ( ( K  tX  K )t  ( X  X.  Y ) )  e.  (TopOn `  ( X  X.  Y ) ) )
176, 16eqeltrid 2280 . . . . . . . . . 10  |-  ( ph  ->  J  e.  (TopOn `  ( X  X.  Y
) ) )
188a1i 9 . . . . . . . . . 10  |-  ( ph  ->  K  e.  (TopOn `  CC ) )
19 limccnp2.h . . . . . . . . . 10  |-  ( ph  ->  H  e.  ( ( J  CnP  K ) `
 <. C ,  D >. ) )
20 cnpf2 14375 . . . . . . . . . 10  |-  ( ( J  e.  (TopOn `  ( X  X.  Y
) )  /\  K  e.  (TopOn `  CC )  /\  H  e.  (
( J  CnP  K
) `  <. C ,  D >. ) )  ->  H : ( X  X.  Y ) --> CC )
2117, 18, 19, 20syl3anc 1249 . . . . . . . . 9  |-  ( ph  ->  H : ( X  X.  Y ) --> CC )
2221ad2antrr 488 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  A )  /\  (
x #  B  /\  ( abs `  ( x  -  B ) )  < inf ( { F ,  G } ,  RR ,  <  ) ) )  ->  H : ( X  X.  Y ) --> CC )
237cntoptop 14701 . . . . . . . . . . . . . . . . 17  |-  K  e. 
Top
2423a1i 9 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  K  e.  Top )
25 txtop 14428 . . . . . . . . . . . . . . . . 17  |-  ( ( K  e.  Top  /\  K  e.  Top )  ->  ( K  tX  K
)  e.  Top )
2623, 24, 25sylancr 414 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( K  tX  K
)  e.  Top )
27 cnex 7996 . . . . . . . . . . . . . . . . . . 19  |-  CC  e.  _V
2827a1i 9 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  CC  e.  _V )
2928, 11ssexd 4169 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  X  e.  _V )
3028, 12ssexd 4169 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  Y  e.  _V )
31 xpexg 4773 . . . . . . . . . . . . . . . . 17  |-  ( ( X  e.  _V  /\  Y  e.  _V )  ->  ( X  X.  Y
)  e.  _V )
3229, 30, 31syl2anc 411 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( X  X.  Y
)  e.  _V )
33 resttop 14338 . . . . . . . . . . . . . . . 16  |-  ( ( ( K  tX  K
)  e.  Top  /\  ( X  X.  Y
)  e.  _V )  ->  ( ( K  tX  K )t  ( X  X.  Y ) )  e. 
Top )
3426, 32, 33syl2anc 411 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( K  tX  K )t  ( X  X.  Y ) )  e. 
Top )
356, 34eqeltrid 2280 . . . . . . . . . . . . . 14  |-  ( ph  ->  J  e.  Top )
36 toptopon2 14187 . . . . . . . . . . . . . 14  |-  ( J  e.  Top  <->  J  e.  (TopOn `  U. J ) )
3735, 36sylib 122 . . . . . . . . . . . . 13  |-  ( ph  ->  J  e.  (TopOn `  U. J ) )
38 cnprcl2k 14374 . . . . . . . . . . . . 13  |-  ( ( J  e.  (TopOn `  U. J )  /\  K  e.  Top  /\  H  e.  ( ( J  CnP  K ) `  <. C ,  D >. ) )  ->  <. C ,  D >.  e. 
U. J )
3937, 24, 19, 38syl3anc 1249 . . . . . . . . . . . 12  |-  ( ph  -> 
<. C ,  D >.  e. 
U. J )
40 toponuni 14183 . . . . . . . . . . . . 13  |-  ( J  e.  (TopOn `  ( X  X.  Y ) )  ->  ( X  X.  Y )  =  U. J )
4117, 40syl 14 . . . . . . . . . . . 12  |-  ( ph  ->  ( X  X.  Y
)  =  U. J
)
4239, 41eleqtrrd 2273 . . . . . . . . . . 11  |-  ( ph  -> 
<. C ,  D >.  e.  ( X  X.  Y
) )
43 opelxp 4689 . . . . . . . . . . 11  |-  ( <. C ,  D >.  e.  ( X  X.  Y
)  <->  ( C  e.  X  /\  D  e.  Y ) )
4442, 43sylib 122 . . . . . . . . . 10  |-  ( ph  ->  ( C  e.  X  /\  D  e.  Y
) )
4544simpld 112 . . . . . . . . 9  |-  ( ph  ->  C  e.  X )
4645ad2antrr 488 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  A )  /\  (
x #  B  /\  ( abs `  ( x  -  B ) )  < inf ( { F ,  G } ,  RR ,  <  ) ) )  ->  C  e.  X )
4744simprd 114 . . . . . . . . 9  |-  ( ph  ->  D  e.  Y )
4847ad2antrr 488 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  A )  /\  (
x #  B  /\  ( abs `  ( x  -  B ) )  < inf ( { F ,  G } ,  RR ,  <  ) ) )  ->  D  e.  Y )
4922, 46, 48fovcdmd 6063 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  A )  /\  (
x #  B  /\  ( abs `  ( x  -  B ) )  < inf ( { F ,  G } ,  RR ,  <  ) ) )  -> 
( C H D )  e.  CC )
50 simpl 109 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  A )  /\  (
x #  B  /\  ( abs `  ( x  -  B ) )  < inf ( { F ,  G } ,  RR ,  <  ) ) )  -> 
( ph  /\  x  e.  A ) )
51 limccnp2.r . . . . . . . . 9  |-  ( (
ph  /\  x  e.  A )  ->  R  e.  X )
5250, 51syl 14 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  A )  /\  (
x #  B  /\  ( abs `  ( x  -  B ) )  < inf ( { F ,  G } ,  RR ,  <  ) ) )  ->  R  e.  X )
53 limccnp2.s . . . . . . . . 9  |-  ( (
ph  /\  x  e.  A )  ->  S  e.  Y )
5450, 53syl 14 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  A )  /\  (
x #  B  /\  ( abs `  ( x  -  B ) )  < inf ( { F ,  G } ,  RR ,  <  ) ) )  ->  S  e.  Y )
5522, 52, 54fovcdmd 6063 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  A )  /\  (
x #  B  /\  ( abs `  ( x  -  B ) )  < inf ( { F ,  G } ,  RR ,  <  ) ) )  -> 
( R H S )  e.  CC )
56 eqid 2193 . . . . . . . 8  |-  ( abs 
o.  -  )  =  ( abs  o.  -  )
5756cnmetdval 14697 . . . . . . 7  |-  ( ( ( C H D )  e.  CC  /\  ( R H S )  e.  CC )  -> 
( ( C H D ) ( abs 
o.  -  ) ( R H S ) )  =  ( abs `  (
( C H D )  -  ( R H S ) ) ) )
5849, 55, 57syl2anc 411 . . . . . 6  |-  ( ( ( ph  /\  x  e.  A )  /\  (
x #  B  /\  ( abs `  ( x  -  B ) )  < inf ( { F ,  G } ,  RR ,  <  ) ) )  -> 
( ( C H D ) ( abs 
o.  -  ) ( R H S ) )  =  ( abs `  (
( C H D )  -  ( R H S ) ) ) )
5949, 55abssubd 11337 . . . . . 6  |-  ( ( ( ph  /\  x  e.  A )  /\  (
x #  B  /\  ( abs `  ( x  -  B ) )  < inf ( { F ,  G } ,  RR ,  <  ) ) )  -> 
( abs `  (
( C H D )  -  ( R H S ) ) )  =  ( abs `  ( ( R H S )  -  ( C H D ) ) ) )
6058, 59eqtrd 2226 . . . . 5  |-  ( ( ( ph  /\  x  e.  A )  /\  (
x #  B  /\  ( abs `  ( x  -  B ) )  < inf ( { F ,  G } ,  RR ,  <  ) ) )  -> 
( ( C H D ) ( abs 
o.  -  ) ( R H S ) )  =  ( abs `  (
( R H S )  -  ( C H D ) ) ) )
6152, 54jca 306 . . . . . 6  |-  ( ( ( ph  /\  x  e.  A )  /\  (
x #  B  /\  ( abs `  ( x  -  B ) )  < inf ( { F ,  G } ,  RR ,  <  ) ) )  -> 
( R  e.  X  /\  S  e.  Y
) )
62 limccnp2lem.rs . . . . . . 7  |-  ( ph  ->  A. r  e.  X  A. s  e.  Y  ( ( ( C ( ( abs  o.  -  )  |`  ( X  X.  X ) ) r )  <  L  /\  ( D ( ( abs  o.  -  )  |`  ( Y  X.  Y
) ) s )  <  L )  -> 
( ( C H D ) ( abs 
o.  -  ) (
r H s ) )  <  E ) )
6362ad2antrr 488 . . . . . 6  |-  ( ( ( ph  /\  x  e.  A )  /\  (
x #  B  /\  ( abs `  ( x  -  B ) )  < inf ( { F ,  G } ,  RR ,  <  ) ) )  ->  A. r  e.  X  A. s  e.  Y  ( ( ( C ( ( abs  o.  -  )  |`  ( X  X.  X ) ) r )  <  L  /\  ( D ( ( abs  o.  -  )  |`  ( Y  X.  Y
) ) s )  <  L )  -> 
( ( C H D ) ( abs 
o.  -  ) (
r H s ) )  <  E ) )
6446, 52ovresd 6059 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  A )  /\  (
x #  B  /\  ( abs `  ( x  -  B ) )  < inf ( { F ,  G } ,  RR ,  <  ) ) )  -> 
( C ( ( abs  o.  -  )  |`  ( X  X.  X
) ) R )  =  ( C ( abs  o.  -  ) R ) )
6511, 45sseldd 3180 . . . . . . . . . . 11  |-  ( ph  ->  C  e.  CC )
6665ad2antrr 488 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  A )  /\  (
x #  B  /\  ( abs `  ( x  -  B ) )  < inf ( { F ,  G } ,  RR ,  <  ) ) )  ->  C  e.  CC )
6711ad2antrr 488 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  A )  /\  (
x #  B  /\  ( abs `  ( x  -  B ) )  < inf ( { F ,  G } ,  RR ,  <  ) ) )  ->  X  C_  CC )
6867, 52sseldd 3180 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  A )  /\  (
x #  B  /\  ( abs `  ( x  -  B ) )  < inf ( { F ,  G } ,  RR ,  <  ) ) )  ->  R  e.  CC )
6956cnmetdval 14697 . . . . . . . . . 10  |-  ( ( C  e.  CC  /\  R  e.  CC )  ->  ( C ( abs 
o.  -  ) R
)  =  ( abs `  ( C  -  R
) ) )
7066, 68, 69syl2anc 411 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  A )  /\  (
x #  B  /\  ( abs `  ( x  -  B ) )  < inf ( { F ,  G } ,  RR ,  <  ) ) )  -> 
( C ( abs 
o.  -  ) R
)  =  ( abs `  ( C  -  R
) ) )
7166, 68abssubd 11337 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  A )  /\  (
x #  B  /\  ( abs `  ( x  -  B ) )  < inf ( { F ,  G } ,  RR ,  <  ) ) )  -> 
( abs `  ( C  -  R )
)  =  ( abs `  ( R  -  C
) ) )
7264, 70, 713eqtrd 2230 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  A )  /\  (
x #  B  /\  ( abs `  ( x  -  B ) )  < inf ( { F ,  G } ,  RR ,  <  ) ) )  -> 
( C ( ( abs  o.  -  )  |`  ( X  X.  X
) ) R )  =  ( abs `  ( R  -  C )
) )
73 simprl 529 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  A )  /\  (
x #  B  /\  ( abs `  ( x  -  B ) )  < inf ( { F ,  G } ,  RR ,  <  ) ) )  ->  x #  B )
7451ex 115 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( x  e.  A  ->  R  e.  X ) )
755, 74ralrimi 2565 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  A. x  e.  A  R  e.  X )
76 dmmptg 5163 . . . . . . . . . . . . . . . . 17  |-  ( A. x  e.  A  R  e.  X  ->  dom  (
x  e.  A  |->  R )  =  A )
7775, 76syl 14 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  dom  ( x  e.  A  |->  R )  =  A )
78 limccnp2.c . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  C  e.  ( ( x  e.  A  |->  R ) lim CC  B ) )
79 limcrcl 14812 . . . . . . . . . . . . . . . . . 18  |-  ( C  e.  ( ( x  e.  A  |->  R ) lim
CC  B )  -> 
( ( x  e.  A  |->  R ) : dom  ( x  e.  A  |->  R ) --> CC 
/\  dom  ( x  e.  A  |->  R ) 
C_  CC  /\  B  e.  CC ) )
8078, 79syl 14 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( ( x  e.  A  |->  R ) : dom  ( x  e.  A  |->  R ) --> CC 
/\  dom  ( x  e.  A  |->  R ) 
C_  CC  /\  B  e.  CC ) )
8180simp2d 1012 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  dom  ( x  e.  A  |->  R )  C_  CC )
8277, 81eqsstrrd 3216 . . . . . . . . . . . . . . 15  |-  ( ph  ->  A  C_  CC )
8382ad2antrr 488 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  A )  /\  (
x #  B  /\  ( abs `  ( x  -  B ) )  < inf ( { F ,  G } ,  RR ,  <  ) ) )  ->  A  C_  CC )
8450simprd 114 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  A )  /\  (
x #  B  /\  ( abs `  ( x  -  B ) )  < inf ( { F ,  G } ,  RR ,  <  ) ) )  ->  x  e.  A )
8583, 84sseldd 3180 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  A )  /\  (
x #  B  /\  ( abs `  ( x  -  B ) )  < inf ( { F ,  G } ,  RR ,  <  ) ) )  ->  x  e.  CC )
8680simp3d 1013 . . . . . . . . . . . . . 14  |-  ( ph  ->  B  e.  CC )
8786ad2antrr 488 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  A )  /\  (
x #  B  /\  ( abs `  ( x  -  B ) )  < inf ( { F ,  G } ,  RR ,  <  ) ) )  ->  B  e.  CC )
8885, 87subcld 8330 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  A )  /\  (
x #  B  /\  ( abs `  ( x  -  B ) )  < inf ( { F ,  G } ,  RR ,  <  ) ) )  -> 
( x  -  B
)  e.  CC )
8988abscld 11325 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  A )  /\  (
x #  B  /\  ( abs `  ( x  -  B ) )  < inf ( { F ,  G } ,  RR ,  <  ) ) )  -> 
( abs `  (
x  -  B ) )  e.  RR )
901ad2antrr 488 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  A )  /\  (
x #  B  /\  ( abs `  ( x  -  B ) )  < inf ( { F ,  G } ,  RR ,  <  ) ) )  ->  F  e.  RR+ )
9190rpred 9762 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  A )  /\  (
x #  B  /\  ( abs `  ( x  -  B ) )  < inf ( { F ,  G } ,  RR ,  <  ) ) )  ->  F  e.  RR )
922ad2antrr 488 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  A )  /\  (
x #  B  /\  ( abs `  ( x  -  B ) )  < inf ( { F ,  G } ,  RR ,  <  ) ) )  ->  G  e.  RR+ )
9392rpred 9762 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  A )  /\  (
x #  B  /\  ( abs `  ( x  -  B ) )  < inf ( { F ,  G } ,  RR ,  <  ) ) )  ->  G  e.  RR )
94 mincl 11374 . . . . . . . . . . . 12  |-  ( ( F  e.  RR  /\  G  e.  RR )  -> inf ( { F ,  G } ,  RR ,  <  )  e.  RR )
9591, 93, 94syl2anc 411 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  A )  /\  (
x #  B  /\  ( abs `  ( x  -  B ) )  < inf ( { F ,  G } ,  RR ,  <  ) ) )  -> inf ( { F ,  G } ,  RR ,  <  )  e.  RR )
96 simprr 531 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  A )  /\  (
x #  B  /\  ( abs `  ( x  -  B ) )  < inf ( { F ,  G } ,  RR ,  <  ) ) )  -> 
( abs `  (
x  -  B ) )  < inf ( { F ,  G } ,  RR ,  <  )
)
97 min1inf 11375 . . . . . . . . . . . 12  |-  ( ( F  e.  RR  /\  G  e.  RR )  -> inf ( { F ,  G } ,  RR ,  <  )  <_  F )
9891, 93, 97syl2anc 411 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  A )  /\  (
x #  B  /\  ( abs `  ( x  -  B ) )  < inf ( { F ,  G } ,  RR ,  <  ) ) )  -> inf ( { F ,  G } ,  RR ,  <  )  <_  F )
9989, 95, 91, 96, 98ltletrd 8442 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  A )  /\  (
x #  B  /\  ( abs `  ( x  -  B ) )  < inf ( { F ,  G } ,  RR ,  <  ) ) )  -> 
( abs `  (
x  -  B ) )  <  F )
10073, 99jca 306 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  A )  /\  (
x #  B  /\  ( abs `  ( x  -  B ) )  < inf ( { F ,  G } ,  RR ,  <  ) ) )  -> 
( x #  B  /\  ( abs `  ( x  -  B ) )  <  F ) )
101 limccnp2lem.fj . . . . . . . . . 10  |-  ( ph  ->  A. x  e.  A  ( ( x #  B  /\  ( abs `  (
x  -  B ) )  <  F )  ->  ( abs `  ( R  -  C )
)  <  L )
)
102101r19.21bi 2582 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  A )  ->  (
( x #  B  /\  ( abs `  ( x  -  B ) )  <  F )  -> 
( abs `  ( R  -  C )
)  <  L )
)
10350, 100, 102sylc 62 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  A )  /\  (
x #  B  /\  ( abs `  ( x  -  B ) )  < inf ( { F ,  G } ,  RR ,  <  ) ) )  -> 
( abs `  ( R  -  C )
)  <  L )
10472, 103eqbrtrd 4051 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  A )  /\  (
x #  B  /\  ( abs `  ( x  -  B ) )  < inf ( { F ,  G } ,  RR ,  <  ) ) )  -> 
( C ( ( abs  o.  -  )  |`  ( X  X.  X
) ) R )  <  L )
10548, 54ovresd 6059 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  A )  /\  (
x #  B  /\  ( abs `  ( x  -  B ) )  < inf ( { F ,  G } ,  RR ,  <  ) ) )  -> 
( D ( ( abs  o.  -  )  |`  ( Y  X.  Y
) ) S )  =  ( D ( abs  o.  -  ) S ) )
10612, 47sseldd 3180 . . . . . . . . . . 11  |-  ( ph  ->  D  e.  CC )
107106ad2antrr 488 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  A )  /\  (
x #  B  /\  ( abs `  ( x  -  B ) )  < inf ( { F ,  G } ,  RR ,  <  ) ) )  ->  D  e.  CC )
10812ad2antrr 488 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  A )  /\  (
x #  B  /\  ( abs `  ( x  -  B ) )  < inf ( { F ,  G } ,  RR ,  <  ) ) )  ->  Y  C_  CC )
109108, 54sseldd 3180 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  A )  /\  (
x #  B  /\  ( abs `  ( x  -  B ) )  < inf ( { F ,  G } ,  RR ,  <  ) ) )  ->  S  e.  CC )
11056cnmetdval 14697 . . . . . . . . . 10  |-  ( ( D  e.  CC  /\  S  e.  CC )  ->  ( D ( abs 
o.  -  ) S
)  =  ( abs `  ( D  -  S
) ) )
111107, 109, 110syl2anc 411 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  A )  /\  (
x #  B  /\  ( abs `  ( x  -  B ) )  < inf ( { F ,  G } ,  RR ,  <  ) ) )  -> 
( D ( abs 
o.  -  ) S
)  =  ( abs `  ( D  -  S
) ) )
112107, 109abssubd 11337 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  A )  /\  (
x #  B  /\  ( abs `  ( x  -  B ) )  < inf ( { F ,  G } ,  RR ,  <  ) ) )  -> 
( abs `  ( D  -  S )
)  =  ( abs `  ( S  -  D
) ) )
113105, 111, 1123eqtrd 2230 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  A )  /\  (
x #  B  /\  ( abs `  ( x  -  B ) )  < inf ( { F ,  G } ,  RR ,  <  ) ) )  -> 
( D ( ( abs  o.  -  )  |`  ( Y  X.  Y
) ) S )  =  ( abs `  ( S  -  D )
) )
114 min2inf 11376 . . . . . . . . . . . 12  |-  ( ( F  e.  RR  /\  G  e.  RR )  -> inf ( { F ,  G } ,  RR ,  <  )  <_  G )
11591, 93, 114syl2anc 411 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  A )  /\  (
x #  B  /\  ( abs `  ( x  -  B ) )  < inf ( { F ,  G } ,  RR ,  <  ) ) )  -> inf ( { F ,  G } ,  RR ,  <  )  <_  G )
11689, 95, 93, 96, 115ltletrd 8442 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  A )  /\  (
x #  B  /\  ( abs `  ( x  -  B ) )  < inf ( { F ,  G } ,  RR ,  <  ) ) )  -> 
( abs `  (
x  -  B ) )  <  G )
11773, 116jca 306 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  A )  /\  (
x #  B  /\  ( abs `  ( x  -  B ) )  < inf ( { F ,  G } ,  RR ,  <  ) ) )  -> 
( x #  B  /\  ( abs `  ( x  -  B ) )  <  G ) )
118 limccnp2lem.gj . . . . . . . . . 10  |-  ( ph  ->  A. x  e.  A  ( ( x #  B  /\  ( abs `  (
x  -  B ) )  <  G )  ->  ( abs `  ( S  -  D )
)  <  L )
)
119118r19.21bi 2582 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  A )  ->  (
( x #  B  /\  ( abs `  ( x  -  B ) )  <  G )  -> 
( abs `  ( S  -  D )
)  <  L )
)
12050, 117, 119sylc 62 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  A )  /\  (
x #  B  /\  ( abs `  ( x  -  B ) )  < inf ( { F ,  G } ,  RR ,  <  ) ) )  -> 
( abs `  ( S  -  D )
)  <  L )
121113, 120eqbrtrd 4051 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  A )  /\  (
x #  B  /\  ( abs `  ( x  -  B ) )  < inf ( { F ,  G } ,  RR ,  <  ) ) )  -> 
( D ( ( abs  o.  -  )  |`  ( Y  X.  Y
) ) S )  <  L )
122104, 121jca 306 . . . . . 6  |-  ( ( ( ph  /\  x  e.  A )  /\  (
x #  B  /\  ( abs `  ( x  -  B ) )  < inf ( { F ,  G } ,  RR ,  <  ) ) )  -> 
( ( C ( ( abs  o.  -  )  |`  ( X  X.  X ) ) R )  <  L  /\  ( D ( ( abs 
o.  -  )  |`  ( Y  X.  Y ) ) S )  <  L
) )
123 oveq2 5926 . . . . . . . . . 10  |-  ( r  =  R  ->  ( C ( ( abs 
o.  -  )  |`  ( X  X.  X ) ) r )  =  ( C ( ( abs 
o.  -  )  |`  ( X  X.  X ) ) R ) )
124123breq1d 4039 . . . . . . . . 9  |-  ( r  =  R  ->  (
( C ( ( abs  o.  -  )  |`  ( X  X.  X
) ) r )  <  L  <->  ( C
( ( abs  o.  -  )  |`  ( X  X.  X ) ) R )  <  L
) )
125124anbi1d 465 . . . . . . . 8  |-  ( r  =  R  ->  (
( ( C ( ( abs  o.  -  )  |`  ( X  X.  X ) ) r )  <  L  /\  ( D ( ( abs 
o.  -  )  |`  ( Y  X.  Y ) ) s )  <  L
)  <->  ( ( C ( ( abs  o.  -  )  |`  ( X  X.  X ) ) R )  <  L  /\  ( D ( ( abs  o.  -  )  |`  ( Y  X.  Y
) ) s )  <  L ) ) )
126 oveq1 5925 . . . . . . . . . 10  |-  ( r  =  R  ->  (
r H s )  =  ( R H s ) )
127126oveq2d 5934 . . . . . . . . 9  |-  ( r  =  R  ->  (
( C H D ) ( abs  o.  -  ) ( r H s ) )  =  ( ( C H D ) ( abs  o.  -  )
( R H s ) ) )
128127breq1d 4039 . . . . . . . 8  |-  ( r  =  R  ->  (
( ( C H D ) ( abs 
o.  -  ) (
r H s ) )  <  E  <->  ( ( C H D ) ( abs  o.  -  )
( R H s ) )  <  E
) )
129125, 128imbi12d 234 . . . . . . 7  |-  ( r  =  R  ->  (
( ( ( C ( ( abs  o.  -  )  |`  ( X  X.  X ) ) r )  <  L  /\  ( D ( ( abs  o.  -  )  |`  ( Y  X.  Y
) ) s )  <  L )  -> 
( ( C H D ) ( abs 
o.  -  ) (
r H s ) )  <  E )  <-> 
( ( ( C ( ( abs  o.  -  )  |`  ( X  X.  X ) ) R )  <  L  /\  ( D ( ( abs  o.  -  )  |`  ( Y  X.  Y
) ) s )  <  L )  -> 
( ( C H D ) ( abs 
o.  -  ) ( R H s ) )  <  E ) ) )
130 oveq2 5926 . . . . . . . . . 10  |-  ( s  =  S  ->  ( D ( ( abs 
o.  -  )  |`  ( Y  X.  Y ) ) s )  =  ( D ( ( abs 
o.  -  )  |`  ( Y  X.  Y ) ) S ) )
131130breq1d 4039 . . . . . . . . 9  |-  ( s  =  S  ->  (
( D ( ( abs  o.  -  )  |`  ( Y  X.  Y
) ) s )  <  L  <->  ( D
( ( abs  o.  -  )  |`  ( Y  X.  Y ) ) S )  <  L
) )
132131anbi2d 464 . . . . . . . 8  |-  ( s  =  S  ->  (
( ( C ( ( abs  o.  -  )  |`  ( X  X.  X ) ) R )  <  L  /\  ( D ( ( abs 
o.  -  )  |`  ( Y  X.  Y ) ) s )  <  L
)  <->  ( ( C ( ( abs  o.  -  )  |`  ( X  X.  X ) ) R )  <  L  /\  ( D ( ( abs  o.  -  )  |`  ( Y  X.  Y
) ) S )  <  L ) ) )
133 oveq2 5926 . . . . . . . . . 10  |-  ( s  =  S  ->  ( R H s )  =  ( R H S ) )
134133oveq2d 5934 . . . . . . . . 9  |-  ( s  =  S  ->  (
( C H D ) ( abs  o.  -  ) ( R H s ) )  =  ( ( C H D ) ( abs  o.  -  )
( R H S ) ) )
135134breq1d 4039 . . . . . . . 8  |-  ( s  =  S  ->  (
( ( C H D ) ( abs 
o.  -  ) ( R H s ) )  <  E  <->  ( ( C H D ) ( abs  o.  -  )
( R H S ) )  <  E
) )
136132, 135imbi12d 234 . . . . . . 7  |-  ( s  =  S  ->  (
( ( ( C ( ( abs  o.  -  )  |`  ( X  X.  X ) ) R )  <  L  /\  ( D ( ( abs  o.  -  )  |`  ( Y  X.  Y
) ) s )  <  L )  -> 
( ( C H D ) ( abs 
o.  -  ) ( R H s ) )  <  E )  <->  ( (
( C ( ( abs  o.  -  )  |`  ( X  X.  X
) ) R )  <  L  /\  ( D ( ( abs 
o.  -  )  |`  ( Y  X.  Y ) ) S )  <  L
)  ->  ( ( C H D ) ( abs  o.  -  )
( R H S ) )  <  E
) ) )
137129, 136rspc2v 2877 . . . . . 6  |-  ( ( R  e.  X  /\  S  e.  Y )  ->  ( A. r  e.  X  A. s  e.  Y  ( ( ( C ( ( abs 
o.  -  )  |`  ( X  X.  X ) ) r )  <  L  /\  ( D ( ( abs  o.  -  )  |`  ( Y  X.  Y
) ) s )  <  L )  -> 
( ( C H D ) ( abs 
o.  -  ) (
r H s ) )  <  E )  ->  ( ( ( C ( ( abs 
o.  -  )  |`  ( X  X.  X ) ) R )  <  L  /\  ( D ( ( abs  o.  -  )  |`  ( Y  X.  Y
) ) S )  <  L )  -> 
( ( C H D ) ( abs 
o.  -  ) ( R H S ) )  <  E ) ) )
13861, 63, 122, 137syl3c 63 . . . . 5  |-  ( ( ( ph  /\  x  e.  A )  /\  (
x #  B  /\  ( abs `  ( x  -  B ) )  < inf ( { F ,  G } ,  RR ,  <  ) ) )  -> 
( ( C H D ) ( abs 
o.  -  ) ( R H S ) )  <  E )
13960, 138eqbrtrrd 4053 . . . 4  |-  ( ( ( ph  /\  x  e.  A )  /\  (
x #  B  /\  ( abs `  ( x  -  B ) )  < inf ( { F ,  G } ,  RR ,  <  ) ) )  -> 
( abs `  (
( R H S )  -  ( C H D ) ) )  <  E )
140139exp31 364 . . 3  |-  ( ph  ->  ( x  e.  A  ->  ( ( x #  B  /\  ( abs `  (
x  -  B ) )  < inf ( { F ,  G } ,  RR ,  <  )
)  ->  ( abs `  ( ( R H S )  -  ( C H D ) ) )  <  E ) ) )
1415, 140ralrimi 2565 . 2  |-  ( ph  ->  A. x  e.  A  ( ( x #  B  /\  ( abs `  (
x  -  B ) )  < inf ( { F ,  G } ,  RR ,  <  )
)  ->  ( abs `  ( ( R H S )  -  ( C H D ) ) )  <  E ) )
142 breq2 4033 . . . 4  |-  ( d  = inf ( { F ,  G } ,  RR ,  <  )  ->  (
( abs `  (
x  -  B ) )  <  d  <->  ( abs `  ( x  -  B
) )  < inf ( { F ,  G } ,  RR ,  <  )
) )
143142anbi2d 464 . . 3  |-  ( d  = inf ( { F ,  G } ,  RR ,  <  )  ->  (
( x #  B  /\  ( abs `  ( x  -  B ) )  <  d )  <->  ( x #  B  /\  ( abs `  (
x  -  B ) )  < inf ( { F ,  G } ,  RR ,  <  )
) ) )
144143rspceaimv 2872 . 2  |-  ( (inf ( { F ,  G } ,  RR ,  <  )  e.  RR+  /\  A. x  e.  A  (
( x #  B  /\  ( abs `  ( x  -  B ) )  < inf ( { F ,  G } ,  RR ,  <  ) )  -> 
( abs `  (
( R H S )  -  ( C H D ) ) )  <  E ) )  ->  E. d  e.  RR+  A. x  e.  A  ( ( x #  B  /\  ( abs `  ( x  -  B
) )  <  d
)  ->  ( abs `  ( ( R H S )  -  ( C H D ) ) )  <  E ) )
1454, 141, 144syl2anc 411 1  |-  ( ph  ->  E. d  e.  RR+  A. x  e.  A  ( ( x #  B  /\  ( abs `  ( x  -  B ) )  <  d )  -> 
( abs `  (
( R H S )  -  ( C H D ) ) )  <  E ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 980    = wceq 1364   F/wnf 1471    e. wcel 2164   A.wral 2472   E.wrex 2473   _Vcvv 2760    C_ wss 3153   {cpr 3619   <.cop 3621   U.cuni 3835   class class class wbr 4029    |-> cmpt 4090    X. cxp 4657   dom cdm 4659    |` cres 4661    o. ccom 4663   -->wf 5250   ` cfv 5254  (class class class)co 5918  infcinf 7042   CCcc 7870   RRcr 7871    < clt 8054    <_ cle 8055    - cmin 8190   # cap 8600   RR+crp 9719   abscabs 11141   ↾t crest 12850   MetOpencmopn 14037   Topctop 14165  TopOnctopon 14178    CnP ccnp 14354    tX ctx 14420   lim CC climc 14808
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-mulrcl 7971  ax-addcom 7972  ax-mulcom 7973  ax-addass 7974  ax-mulass 7975  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-1rid 7979  ax-0id 7980  ax-rnegex 7981  ax-precex 7982  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988  ax-pre-mulgt0 7989  ax-pre-mulext 7990  ax-arch 7991  ax-caucvg 7992
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-po 4327  df-iso 4328  df-iord 4397  df-on 4399  df-ilim 4400  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-isom 5263  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-frec 6444  df-map 6704  df-pm 6705  df-sup 7043  df-inf 7044  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-reap 8594  df-ap 8601  df-div 8692  df-inn 8983  df-2 9041  df-3 9042  df-4 9043  df-n0 9241  df-z 9318  df-uz 9593  df-q 9685  df-rp 9720  df-xneg 9838  df-xadd 9839  df-seqfrec 10519  df-exp 10610  df-cj 10986  df-re 10987  df-im 10988  df-rsqrt 11142  df-abs 11143  df-rest 12852  df-topgen 12871  df-psmet 14039  df-xmet 14040  df-met 14041  df-bl 14042  df-mopn 14043  df-top 14166  df-topon 14179  df-bases 14211  df-cnp 14357  df-tx 14421  df-limced 14810
This theorem is referenced by:  limccnp2cntop  14831
  Copyright terms: Public domain W3C validator