ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  s2eqd Unicode version

Theorem s2eqd 11263
Description: Equality theorem for a doubleton word. (Contributed by Mario Carneiro, 27-Feb-2016.)
Hypotheses
Ref Expression
s2eqd.1  |-  ( ph  ->  A  =  N )
s2eqd.2  |-  ( ph  ->  B  =  O )
Assertion
Ref Expression
s2eqd  |-  ( ph  ->  <" A B ">  =  <" N O "> )

Proof of Theorem s2eqd
StepHypRef Expression
1 s2eqd.1 . . . 4  |-  ( ph  ->  A  =  N )
21s1eqd 11114 . . 3  |-  ( ph  ->  <" A ">  =  <" N "> )
3 s2eqd.2 . . . 4  |-  ( ph  ->  B  =  O )
43s1eqd 11114 . . 3  |-  ( ph  ->  <" B ">  =  <" O "> )
52, 4oveq12d 5987 . 2  |-  ( ph  ->  ( <" A "> ++  <" B "> )  =  ( <" N "> ++  <" O "> ) )
6 df-s2 11249 . 2  |-  <" A B ">  =  (
<" A "> ++  <" B "> )
7 df-s2 11249 . 2  |-  <" N O ">  =  (
<" N "> ++  <" O "> )
85, 6, 73eqtr4g 2265 1  |-  ( ph  ->  <" A B ">  =  <" N O "> )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373  (class class class)co 5969   ++ cconcat 11086   <"cs1 11109   <"cs2 11242
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-rex 2492  df-v 2779  df-un 3179  df-sn 3650  df-pr 3651  df-op 3653  df-uni 3866  df-br 4061  df-iota 5252  df-fv 5299  df-ov 5972  df-s1 11110  df-s2 11249
This theorem is referenced by:  s3eqd  11264
  Copyright terms: Public domain W3C validator