| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > s2eqd | GIF version | ||
| Description: Equality theorem for a doubleton word. (Contributed by Mario Carneiro, 27-Feb-2016.) |
| Ref | Expression |
|---|---|
| s2eqd.1 | ⊢ (𝜑 → 𝐴 = 𝑁) |
| s2eqd.2 | ⊢ (𝜑 → 𝐵 = 𝑂) |
| Ref | Expression |
|---|---|
| s2eqd | ⊢ (𝜑 → 〈“𝐴𝐵”〉 = 〈“𝑁𝑂”〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | s2eqd.1 | . . . 4 ⊢ (𝜑 → 𝐴 = 𝑁) | |
| 2 | 1 | s1eqd 11114 | . . 3 ⊢ (𝜑 → 〈“𝐴”〉 = 〈“𝑁”〉) |
| 3 | s2eqd.2 | . . . 4 ⊢ (𝜑 → 𝐵 = 𝑂) | |
| 4 | 3 | s1eqd 11114 | . . 3 ⊢ (𝜑 → 〈“𝐵”〉 = 〈“𝑂”〉) |
| 5 | 2, 4 | oveq12d 5987 | . 2 ⊢ (𝜑 → (〈“𝐴”〉 ++ 〈“𝐵”〉) = (〈“𝑁”〉 ++ 〈“𝑂”〉)) |
| 6 | df-s2 11249 | . 2 ⊢ 〈“𝐴𝐵”〉 = (〈“𝐴”〉 ++ 〈“𝐵”〉) | |
| 7 | df-s2 11249 | . 2 ⊢ 〈“𝑁𝑂”〉 = (〈“𝑁”〉 ++ 〈“𝑂”〉) | |
| 8 | 5, 6, 7 | 3eqtr4g 2265 | 1 ⊢ (𝜑 → 〈“𝐴𝐵”〉 = 〈“𝑁𝑂”〉) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 (class class class)co 5969 ++ cconcat 11086 〈“cs1 11109 〈“cs2 11242 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-rex 2492 df-v 2779 df-un 3179 df-sn 3650 df-pr 3651 df-op 3653 df-uni 3866 df-br 4061 df-iota 5252 df-fv 5299 df-ov 5972 df-s1 11110 df-s2 11249 |
| This theorem is referenced by: s3eqd 11264 |
| Copyright terms: Public domain | W3C validator |