| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > s2eqd | GIF version | ||
| Description: Equality theorem for a doubleton word. (Contributed by Mario Carneiro, 27-Feb-2016.) |
| Ref | Expression |
|---|---|
| s2eqd.1 | ⊢ (𝜑 → 𝐴 = 𝑁) |
| s2eqd.2 | ⊢ (𝜑 → 𝐵 = 𝑂) |
| Ref | Expression |
|---|---|
| s2eqd | ⊢ (𝜑 → 〈“𝐴𝐵”〉 = 〈“𝑁𝑂”〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | s2eqd.1 | . . . 4 ⊢ (𝜑 → 𝐴 = 𝑁) | |
| 2 | 1 | s1eqd 11153 | . . 3 ⊢ (𝜑 → 〈“𝐴”〉 = 〈“𝑁”〉) |
| 3 | s2eqd.2 | . . . 4 ⊢ (𝜑 → 𝐵 = 𝑂) | |
| 4 | 3 | s1eqd 11153 | . . 3 ⊢ (𝜑 → 〈“𝐵”〉 = 〈“𝑂”〉) |
| 5 | 2, 4 | oveq12d 6019 | . 2 ⊢ (𝜑 → (〈“𝐴”〉 ++ 〈“𝐵”〉) = (〈“𝑁”〉 ++ 〈“𝑂”〉)) |
| 6 | df-s2 11288 | . 2 ⊢ 〈“𝐴𝐵”〉 = (〈“𝐴”〉 ++ 〈“𝐵”〉) | |
| 7 | df-s2 11288 | . 2 ⊢ 〈“𝑁𝑂”〉 = (〈“𝑁”〉 ++ 〈“𝑂”〉) | |
| 8 | 5, 6, 7 | 3eqtr4g 2287 | 1 ⊢ (𝜑 → 〈“𝐴𝐵”〉 = 〈“𝑁𝑂”〉) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1395 (class class class)co 6001 ++ cconcat 11125 〈“cs1 11148 〈“cs2 11281 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-rex 2514 df-v 2801 df-un 3201 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-iota 5278 df-fv 5326 df-ov 6004 df-s1 11149 df-s2 11288 |
| This theorem is referenced by: s3eqd 11303 |
| Copyright terms: Public domain | W3C validator |