ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fz1sbc Unicode version

Theorem fz1sbc 9876
Description: Quantification over a one-member finite set of sequential integers in terms of substitution. (Contributed by NM, 28-Nov-2005.)
Assertion
Ref Expression
fz1sbc  |-  ( N  e.  ZZ  ->  ( A. k  e.  ( N ... N ) ph  <->  [. N  /  k ]. ph ) )
Distinct variable group:    k, N
Allowed substitution hint:    ph( k)

Proof of Theorem fz1sbc
StepHypRef Expression
1 sbc6g 2933 . 2  |-  ( N  e.  ZZ  ->  ( [. N  /  k ]. ph  <->  A. k ( k  =  N  ->  ph )
) )
2 df-ral 2421 . . 3  |-  ( A. k  e.  ( N ... N ) ph  <->  A. k
( k  e.  ( N ... N )  ->  ph ) )
3 elfz1eq 9815 . . . . . 6  |-  ( k  e.  ( N ... N )  ->  k  =  N )
4 elfz3 9814 . . . . . . 7  |-  ( N  e.  ZZ  ->  N  e.  ( N ... N
) )
5 eleq1 2202 . . . . . . 7  |-  ( k  =  N  ->  (
k  e.  ( N ... N )  <->  N  e.  ( N ... N ) ) )
64, 5syl5ibrcom 156 . . . . . 6  |-  ( N  e.  ZZ  ->  (
k  =  N  -> 
k  e.  ( N ... N ) ) )
73, 6impbid2 142 . . . . 5  |-  ( N  e.  ZZ  ->  (
k  e.  ( N ... N )  <->  k  =  N ) )
87imbi1d 230 . . . 4  |-  ( N  e.  ZZ  ->  (
( k  e.  ( N ... N )  ->  ph )  <->  ( k  =  N  ->  ph )
) )
98albidv 1796 . . 3  |-  ( N  e.  ZZ  ->  ( A. k ( k  e.  ( N ... N
)  ->  ph )  <->  A. k
( k  =  N  ->  ph ) ) )
102, 9syl5rbb 192 . 2  |-  ( N  e.  ZZ  ->  ( A. k ( k  =  N  ->  ph )  <->  A. k  e.  ( N ... N
) ph ) )
111, 10bitr2d 188 1  |-  ( N  e.  ZZ  ->  ( A. k  e.  ( N ... N ) ph  <->  [. N  /  k ]. ph ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104   A.wal 1329    = wceq 1331    e. wcel 1480   A.wral 2416   [.wsbc 2909  (class class class)co 5774   ZZcz 9054   ...cfz 9790
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-cnex 7711  ax-resscn 7712  ax-pre-ltirr 7732  ax-pre-apti 7735
This theorem depends on definitions:  df-bi 116  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-rab 2425  df-v 2688  df-sbc 2910  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-br 3930  df-opab 3990  df-mpt 3991  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-fv 5131  df-ov 5777  df-oprab 5778  df-mpo 5779  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-neg 7936  df-z 9055  df-uz 9327  df-fz 9791
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator