ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fz1sbc Unicode version

Theorem fz1sbc 10253
Description: Quantification over a one-member finite set of sequential integers in terms of substitution. (Contributed by NM, 28-Nov-2005.)
Assertion
Ref Expression
fz1sbc  |-  ( N  e.  ZZ  ->  ( A. k  e.  ( N ... N ) ph  <->  [. N  /  k ]. ph ) )
Distinct variable group:    k, N
Allowed substitution hint:    ph( k)

Proof of Theorem fz1sbc
StepHypRef Expression
1 sbc6g 3030 . 2  |-  ( N  e.  ZZ  ->  ( [. N  /  k ]. ph  <->  A. k ( k  =  N  ->  ph )
) )
2 df-ral 2491 . . 3  |-  ( A. k  e.  ( N ... N ) ph  <->  A. k
( k  e.  ( N ... N )  ->  ph ) )
3 elfz1eq 10192 . . . . . 6  |-  ( k  e.  ( N ... N )  ->  k  =  N )
4 elfz3 10191 . . . . . . 7  |-  ( N  e.  ZZ  ->  N  e.  ( N ... N
) )
5 eleq1 2270 . . . . . . 7  |-  ( k  =  N  ->  (
k  e.  ( N ... N )  <->  N  e.  ( N ... N ) ) )
64, 5syl5ibrcom 157 . . . . . 6  |-  ( N  e.  ZZ  ->  (
k  =  N  -> 
k  e.  ( N ... N ) ) )
73, 6impbid2 143 . . . . 5  |-  ( N  e.  ZZ  ->  (
k  e.  ( N ... N )  <->  k  =  N ) )
87imbi1d 231 . . . 4  |-  ( N  e.  ZZ  ->  (
( k  e.  ( N ... N )  ->  ph )  <->  ( k  =  N  ->  ph )
) )
98albidv 1848 . . 3  |-  ( N  e.  ZZ  ->  ( A. k ( k  e.  ( N ... N
)  ->  ph )  <->  A. k
( k  =  N  ->  ph ) ) )
102, 9bitr2id 193 . 2  |-  ( N  e.  ZZ  ->  ( A. k ( k  =  N  ->  ph )  <->  A. k  e.  ( N ... N
) ph ) )
111, 10bitr2d 189 1  |-  ( N  e.  ZZ  ->  ( A. k  e.  ( N ... N ) ph  <->  [. N  /  k ]. ph ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105   A.wal 1371    = wceq 1373    e. wcel 2178   A.wral 2486   [.wsbc 3005  (class class class)co 5967   ZZcz 9407   ...cfz 10165
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-cnex 8051  ax-resscn 8052  ax-pre-ltirr 8072  ax-pre-apti 8075
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-rab 2495  df-v 2778  df-sbc 3006  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-fv 5298  df-ov 5970  df-oprab 5971  df-mpo 5972  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148  df-neg 8281  df-z 9408  df-uz 9684  df-fz 10166
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator