ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbc6g GIF version

Theorem sbc6g 2862
Description: An equivalence for class substitution. (Contributed by NM, 11-Oct-2004.) (Proof shortened by Andrew Salmon, 8-Jun-2011.)
Assertion
Ref Expression
sbc6g (𝐴𝑉 → ([𝐴 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝐴𝜑)))
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝑉(𝑥)

Proof of Theorem sbc6g
StepHypRef Expression
1 nfe1 1430 . . 3 𝑥𝑥(𝑥 = 𝐴𝜑)
2 ceqex 2742 . . 3 (𝑥 = 𝐴 → (𝜑 ↔ ∃𝑥(𝑥 = 𝐴𝜑)))
31, 2ceqsalg 2647 . 2 (𝐴𝑉 → (∀𝑥(𝑥 = 𝐴𝜑) ↔ ∃𝑥(𝑥 = 𝐴𝜑)))
4 sbc5 2861 . 2 ([𝐴 / 𝑥]𝜑 ↔ ∃𝑥(𝑥 = 𝐴𝜑))
53, 4syl6rbbr 197 1 (𝐴𝑉 → ([𝐴 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝐴𝜑)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103  wal 1287   = wceq 1289  wex 1426  wcel 1438  [wsbc 2838
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070
This theorem depends on definitions:  df-bi 115  df-tru 1292  df-nf 1395  df-sb 1693  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-v 2621  df-sbc 2839
This theorem is referenced by:  sbc6  2863  sbciegft  2867  ralsnsg  3475  ralsns  3476  fz1sbc  9477
  Copyright terms: Public domain W3C validator