ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbcel1v GIF version

Theorem sbcel1v 3091
Description: Class substitution into a membership relation. (Contributed by NM, 17-Aug-2018.)
Assertion
Ref Expression
sbcel1v ([𝐴 / 𝑥]𝑥𝐵𝐴𝐵)
Distinct variable group:   𝑥,𝐵
Allowed substitution hint:   𝐴(𝑥)

Proof of Theorem sbcel1v
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 sbcex 3037 . 2 ([𝐴 / 𝑥]𝑥𝐵𝐴 ∈ V)
2 elex 2811 . 2 (𝐴𝐵𝐴 ∈ V)
3 dfsbcq2 3031 . . 3 (𝑦 = 𝐴 → ([𝑦 / 𝑥]𝑥𝐵[𝐴 / 𝑥]𝑥𝐵))
4 eleq1 2292 . . 3 (𝑦 = 𝐴 → (𝑦𝐵𝐴𝐵))
5 clelsb1 2334 . . 3 ([𝑦 / 𝑥]𝑥𝐵𝑦𝐵)
63, 4, 5vtoclbg 2862 . 2 (𝐴 ∈ V → ([𝐴 / 𝑥]𝑥𝐵𝐴𝐵))
71, 2, 6pm5.21nii 709 1 ([𝐴 / 𝑥]𝑥𝐵𝐴𝐵)
Colors of variables: wff set class
Syntax hints:  wb 105  [wsb 1808  wcel 2200  Vcvv 2799  [wsbc 3028
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-sbc 3029
This theorem is referenced by:  f1od2  6387  gropeld  15858  grstructeld2dom  15859
  Copyright terms: Public domain W3C validator