ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbcel1v GIF version

Theorem sbcel1v 3052
Description: Class substitution into a membership relation. (Contributed by NM, 17-Aug-2018.)
Assertion
Ref Expression
sbcel1v ([𝐴 / 𝑥]𝑥𝐵𝐴𝐵)
Distinct variable group:   𝑥,𝐵
Allowed substitution hint:   𝐴(𝑥)

Proof of Theorem sbcel1v
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 sbcex 2998 . 2 ([𝐴 / 𝑥]𝑥𝐵𝐴 ∈ V)
2 elex 2774 . 2 (𝐴𝐵𝐴 ∈ V)
3 dfsbcq2 2992 . . 3 (𝑦 = 𝐴 → ([𝑦 / 𝑥]𝑥𝐵[𝐴 / 𝑥]𝑥𝐵))
4 eleq1 2259 . . 3 (𝑦 = 𝐴 → (𝑦𝐵𝐴𝐵))
5 clelsb1 2301 . . 3 ([𝑦 / 𝑥]𝑥𝐵𝑦𝐵)
63, 4, 5vtoclbg 2825 . 2 (𝐴 ∈ V → ([𝐴 / 𝑥]𝑥𝐵𝐴𝐵))
71, 2, 6pm5.21nii 705 1 ([𝐴 / 𝑥]𝑥𝐵𝐴𝐵)
Colors of variables: wff set class
Syntax hints:  wb 105  [wsb 1776  wcel 2167  Vcvv 2763  [wsbc 2989
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-sbc 2990
This theorem is referenced by:  f1od2  6293
  Copyright terms: Public domain W3C validator