![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sbcel1v | GIF version |
Description: Class substitution into a membership relation. (Contributed by NM, 17-Aug-2018.) |
Ref | Expression |
---|---|
sbcel1v | ⊢ ([𝐴 / 𝑥]𝑥 ∈ 𝐵 ↔ 𝐴 ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbcex 2848 | . 2 ⊢ ([𝐴 / 𝑥]𝑥 ∈ 𝐵 → 𝐴 ∈ V) | |
2 | elex 2630 | . 2 ⊢ (𝐴 ∈ 𝐵 → 𝐴 ∈ V) | |
3 | dfsbcq2 2843 | . . 3 ⊢ (𝑦 = 𝐴 → ([𝑦 / 𝑥]𝑥 ∈ 𝐵 ↔ [𝐴 / 𝑥]𝑥 ∈ 𝐵)) | |
4 | eleq1 2150 | . . 3 ⊢ (𝑦 = 𝐴 → (𝑦 ∈ 𝐵 ↔ 𝐴 ∈ 𝐵)) | |
5 | clelsb3 2192 | . . 3 ⊢ ([𝑦 / 𝑥]𝑥 ∈ 𝐵 ↔ 𝑦 ∈ 𝐵) | |
6 | 3, 4, 5 | vtoclbg 2680 | . 2 ⊢ (𝐴 ∈ V → ([𝐴 / 𝑥]𝑥 ∈ 𝐵 ↔ 𝐴 ∈ 𝐵)) |
7 | 1, 2, 6 | pm5.21nii 655 | 1 ⊢ ([𝐴 / 𝑥]𝑥 ∈ 𝐵 ↔ 𝐴 ∈ 𝐵) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 103 ∈ wcel 1438 [wsb 1692 Vcvv 2619 [wsbc 2840 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 665 ax-5 1381 ax-7 1382 ax-gen 1383 ax-ie1 1427 ax-ie2 1428 ax-8 1440 ax-10 1441 ax-11 1442 ax-i12 1443 ax-bndl 1444 ax-4 1445 ax-17 1464 ax-i9 1468 ax-ial 1472 ax-i5r 1473 ax-ext 2070 |
This theorem depends on definitions: df-bi 115 df-tru 1292 df-nf 1395 df-sb 1693 df-clab 2075 df-cleq 2081 df-clel 2084 df-nfc 2217 df-v 2621 df-sbc 2841 |
This theorem is referenced by: f1od2 5992 |
Copyright terms: Public domain | W3C validator |