ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbcex2 GIF version

Theorem sbcex2 3039
Description: Move existential quantifier in and out of class substitution. (Contributed by NM, 21-May-2004.)
Assertion
Ref Expression
sbcex2 ([𝐴 / 𝑦]𝑥𝜑 ↔ ∃𝑥[𝐴 / 𝑦]𝜑)
Distinct variable groups:   𝑥,𝐴   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑦)

Proof of Theorem sbcex2
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 sbcex 2994 . 2 ([𝐴 / 𝑦]𝑥𝜑𝐴 ∈ V)
2 sbcex 2994 . . 3 ([𝐴 / 𝑦]𝜑𝐴 ∈ V)
32exlimiv 1609 . 2 (∃𝑥[𝐴 / 𝑦]𝜑𝐴 ∈ V)
4 dfsbcq2 2988 . . 3 (𝑧 = 𝐴 → ([𝑧 / 𝑦]∃𝑥𝜑[𝐴 / 𝑦]𝑥𝜑))
5 dfsbcq2 2988 . . . 4 (𝑧 = 𝐴 → ([𝑧 / 𝑦]𝜑[𝐴 / 𝑦]𝜑))
65exbidv 1836 . . 3 (𝑧 = 𝐴 → (∃𝑥[𝑧 / 𝑦]𝜑 ↔ ∃𝑥[𝐴 / 𝑦]𝜑))
7 sbex 2020 . . 3 ([𝑧 / 𝑦]∃𝑥𝜑 ↔ ∃𝑥[𝑧 / 𝑦]𝜑)
84, 6, 7vtoclbg 2821 . 2 (𝐴 ∈ V → ([𝐴 / 𝑦]𝑥𝜑 ↔ ∃𝑥[𝐴 / 𝑦]𝜑))
91, 3, 8pm5.21nii 705 1 ([𝐴 / 𝑦]𝑥𝜑 ↔ ∃𝑥[𝐴 / 𝑦]𝜑)
Colors of variables: wff set class
Syntax hints:  wb 105   = wceq 1364  wex 1503  [wsb 1773  wcel 2164  Vcvv 2760  [wsbc 2985
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-sbc 2986
This theorem is referenced by:  csbdmg  4856
  Copyright terms: Public domain W3C validator