| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sbcied2 | Unicode version | ||
| Description: Conversion of implicit substitution to explicit class substitution, deduction form. (Contributed by NM, 13-Dec-2014.) |
| Ref | Expression |
|---|---|
| sbcied2.1 |
|
| sbcied2.2 |
|
| sbcied2.3 |
|
| Ref | Expression |
|---|---|
| sbcied2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbcied2.1 |
. 2
| |
| 2 | id 19 |
. . . 4
| |
| 3 | sbcied2.2 |
. . . 4
| |
| 4 | 2, 3 | sylan9eqr 2284 |
. . 3
|
| 5 | sbcied2.3 |
. . 3
| |
| 6 | 4, 5 | syldan 282 |
. 2
|
| 7 | 1, 6 | sbcied 3065 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-sbc 3029 |
| This theorem is referenced by: ismgm 13390 issgrp 13436 isnsg 13739 isrng 13897 isring 13963 isdomn 14233 isuhgrm 15871 isushgrm 15872 isupgren 15895 isumgren 15905 isuspgren 15955 isusgren 15956 |
| Copyright terms: Public domain | W3C validator |