ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbcied2 Unicode version

Theorem sbcied2 2988
Description: Conversion of implicit substitution to explicit class substitution, deduction form. (Contributed by NM, 13-Dec-2014.)
Hypotheses
Ref Expression
sbcied2.1  |-  ( ph  ->  A  e.  V )
sbcied2.2  |-  ( ph  ->  A  =  B )
sbcied2.3  |-  ( (
ph  /\  x  =  B )  ->  ( ps 
<->  ch ) )
Assertion
Ref Expression
sbcied2  |-  ( ph  ->  ( [. A  /  x ]. ps  <->  ch )
)
Distinct variable groups:    x, A    ph, x    ch, x
Allowed substitution hints:    ps( x)    B( x)    V( x)

Proof of Theorem sbcied2
StepHypRef Expression
1 sbcied2.1 . 2  |-  ( ph  ->  A  e.  V )
2 id 19 . . . 4  |-  ( x  =  A  ->  x  =  A )
3 sbcied2.2 . . . 4  |-  ( ph  ->  A  =  B )
42, 3sylan9eqr 2221 . . 3  |-  ( (
ph  /\  x  =  A )  ->  x  =  B )
5 sbcied2.3 . . 3  |-  ( (
ph  /\  x  =  B )  ->  ( ps 
<->  ch ) )
64, 5syldan 280 . 2  |-  ( (
ph  /\  x  =  A )  ->  ( ps 
<->  ch ) )
71, 6sbcied 2987 1  |-  ( ph  ->  ( [. A  /  x ]. ps  <->  ch )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1343    e. wcel 2136   [.wsbc 2951
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-sbc 2952
This theorem is referenced by:  ismgm  12588
  Copyright terms: Public domain W3C validator