| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > isnsg | Unicode version | ||
| Description: Property of being a normal subgroup. (Contributed by Mario Carneiro, 18-Jan-2015.) |
| Ref | Expression |
|---|---|
| isnsg.1 |
|
| isnsg.2 |
|
| Ref | Expression |
|---|---|
| isnsg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-nsg 13507 |
. . 3
| |
| 2 | 1 | mptrcl 5662 |
. 2
|
| 3 | subgrcl 13515 |
. . 3
| |
| 4 | 3 | adantr 276 |
. 2
|
| 5 | fveq2 5576 |
. . . . . 6
| |
| 6 | basfn 12890 |
. . . . . . . . . 10
| |
| 7 | funfvex 5593 |
. . . . . . . . . . 11
| |
| 8 | 7 | funfni 5376 |
. . . . . . . . . 10
|
| 9 | 6, 8 | mpan 424 |
. . . . . . . . 9
|
| 10 | 9 | elv 2776 |
. . . . . . . 8
|
| 11 | 10 | a1i 9 |
. . . . . . 7
|
| 12 | fveq2 5576 |
. . . . . . . 8
| |
| 13 | isnsg.1 |
. . . . . . . 8
| |
| 14 | 12, 13 | eqtr4di 2256 |
. . . . . . 7
|
| 15 | plusgslid 12944 |
. . . . . . . . . . 11
| |
| 16 | 15 | slotex 12859 |
. . . . . . . . . 10
|
| 17 | 16 | elv 2776 |
. . . . . . . . 9
|
| 18 | 17 | a1i 9 |
. . . . . . . 8
|
| 19 | simpl 109 |
. . . . . . . . . 10
| |
| 20 | 19 | fveq2d 5580 |
. . . . . . . . 9
|
| 21 | isnsg.2 |
. . . . . . . . 9
| |
| 22 | 20, 21 | eqtr4di 2256 |
. . . . . . . 8
|
| 23 | simplr 528 |
. . . . . . . . 9
| |
| 24 | simpr 110 |
. . . . . . . . . . . . 13
| |
| 25 | 24 | oveqd 5961 |
. . . . . . . . . . . 12
|
| 26 | 25 | eleq1d 2274 |
. . . . . . . . . . 11
|
| 27 | 24 | oveqd 5961 |
. . . . . . . . . . . 12
|
| 28 | 27 | eleq1d 2274 |
. . . . . . . . . . 11
|
| 29 | 26, 28 | bibi12d 235 |
. . . . . . . . . 10
|
| 30 | 23, 29 | raleqbidv 2718 |
. . . . . . . . 9
|
| 31 | 23, 30 | raleqbidv 2718 |
. . . . . . . 8
|
| 32 | 18, 22, 31 | sbcied2 3036 |
. . . . . . 7
|
| 33 | 11, 14, 32 | sbcied2 3036 |
. . . . . 6
|
| 34 | 5, 33 | rabeqbidv 2767 |
. . . . 5
|
| 35 | id 19 |
. . . . 5
| |
| 36 | subgex 13512 |
. . . . . 6
| |
| 37 | rabexg 4187 |
. . . . . 6
| |
| 38 | 36, 37 | syl 14 |
. . . . 5
|
| 39 | 1, 34, 35, 38 | fvmptd3 5673 |
. . . 4
|
| 40 | 39 | eleq2d 2275 |
. . 3
|
| 41 | eleq2 2269 |
. . . . . 6
| |
| 42 | eleq2 2269 |
. . . . . 6
| |
| 43 | 41, 42 | bibi12d 235 |
. . . . 5
|
| 44 | 43 | 2ralbidv 2530 |
. . . 4
|
| 45 | 44 | elrab 2929 |
. . 3
|
| 46 | 40, 45 | bitrdi 196 |
. 2
|
| 47 | 2, 4, 46 | pm5.21nii 706 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-cnex 8016 ax-resscn 8017 ax-1re 8019 ax-addrcl 8022 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-br 4045 df-opab 4106 df-mpt 4107 df-id 4340 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-ima 4688 df-iota 5232 df-fun 5273 df-fn 5274 df-fv 5279 df-ov 5947 df-inn 9037 df-2 9095 df-ndx 12835 df-slot 12836 df-base 12838 df-plusg 12922 df-subg 13506 df-nsg 13507 |
| This theorem is referenced by: isnsg2 13539 nsgbi 13540 nsgsubg 13541 isnsg4 13548 nmznsg 13549 ablnsg 13670 |
| Copyright terms: Public domain | W3C validator |