ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isnsg Unicode version

Theorem isnsg 13538
Description: Property of being a normal subgroup. (Contributed by Mario Carneiro, 18-Jan-2015.)
Hypotheses
Ref Expression
isnsg.1  |-  X  =  ( Base `  G
)
isnsg.2  |-  .+  =  ( +g  `  G )
Assertion
Ref Expression
isnsg  |-  ( S  e.  (NrmSGrp `  G
)  <->  ( S  e.  (SubGrp `  G )  /\  A. x  e.  X  A. y  e.  X  ( ( x  .+  y )  e.  S  <->  ( y  .+  x )  e.  S ) ) )
Distinct variable groups:    x, y, G   
x,  .+ , y    x, S, y    x, X, y

Proof of Theorem isnsg
Dummy variables  g  b  p  s are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-nsg 13507 . . 3  |- NrmSGrp  =  ( g  e.  Grp  |->  { s  e.  (SubGrp `  g )  |  [. ( Base `  g )  /  b ]. [. ( +g  `  g )  /  p ]. A. x  e.  b  A. y  e.  b  ( ( x p y )  e.  s  <->  ( y p x )  e.  s ) } )
21mptrcl 5662 . 2  |-  ( S  e.  (NrmSGrp `  G
)  ->  G  e.  Grp )
3 subgrcl 13515 . . 3  |-  ( S  e.  (SubGrp `  G
)  ->  G  e.  Grp )
43adantr 276 . 2  |-  ( ( S  e.  (SubGrp `  G )  /\  A. x  e.  X  A. y  e.  X  (
( x  .+  y
)  e.  S  <->  ( y  .+  x )  e.  S
) )  ->  G  e.  Grp )
5 fveq2 5576 . . . . . 6  |-  ( g  =  G  ->  (SubGrp `  g )  =  (SubGrp `  G ) )
6 basfn 12890 . . . . . . . . . 10  |-  Base  Fn  _V
7 funfvex 5593 . . . . . . . . . . 11  |-  ( ( Fun  Base  /\  g  e.  dom  Base )  ->  ( Base `  g )  e. 
_V )
87funfni 5376 . . . . . . . . . 10  |-  ( (
Base  Fn  _V  /\  g  e.  _V )  ->  ( Base `  g )  e. 
_V )
96, 8mpan 424 . . . . . . . . 9  |-  ( g  e.  _V  ->  ( Base `  g )  e. 
_V )
109elv 2776 . . . . . . . 8  |-  ( Base `  g )  e.  _V
1110a1i 9 . . . . . . 7  |-  ( g  =  G  ->  ( Base `  g )  e. 
_V )
12 fveq2 5576 . . . . . . . 8  |-  ( g  =  G  ->  ( Base `  g )  =  ( Base `  G
) )
13 isnsg.1 . . . . . . . 8  |-  X  =  ( Base `  G
)
1412, 13eqtr4di 2256 . . . . . . 7  |-  ( g  =  G  ->  ( Base `  g )  =  X )
15 plusgslid 12944 . . . . . . . . . . 11  |-  ( +g  = Slot  ( +g  `  ndx )  /\  ( +g  `  ndx )  e.  NN )
1615slotex 12859 . . . . . . . . . 10  |-  ( g  e.  _V  ->  ( +g  `  g )  e. 
_V )
1716elv 2776 . . . . . . . . 9  |-  ( +g  `  g )  e.  _V
1817a1i 9 . . . . . . . 8  |-  ( ( g  =  G  /\  b  =  X )  ->  ( +g  `  g
)  e.  _V )
19 simpl 109 . . . . . . . . . 10  |-  ( ( g  =  G  /\  b  =  X )  ->  g  =  G )
2019fveq2d 5580 . . . . . . . . 9  |-  ( ( g  =  G  /\  b  =  X )  ->  ( +g  `  g
)  =  ( +g  `  G ) )
21 isnsg.2 . . . . . . . . 9  |-  .+  =  ( +g  `  G )
2220, 21eqtr4di 2256 . . . . . . . 8  |-  ( ( g  =  G  /\  b  =  X )  ->  ( +g  `  g
)  =  .+  )
23 simplr 528 . . . . . . . . 9  |-  ( ( ( g  =  G  /\  b  =  X )  /\  p  = 
.+  )  ->  b  =  X )
24 simpr 110 . . . . . . . . . . . . 13  |-  ( ( ( g  =  G  /\  b  =  X )  /\  p  = 
.+  )  ->  p  =  .+  )
2524oveqd 5961 . . . . . . . . . . . 12  |-  ( ( ( g  =  G  /\  b  =  X )  /\  p  = 
.+  )  ->  (
x p y )  =  ( x  .+  y ) )
2625eleq1d 2274 . . . . . . . . . . 11  |-  ( ( ( g  =  G  /\  b  =  X )  /\  p  = 
.+  )  ->  (
( x p y )  e.  s  <->  ( x  .+  y )  e.  s ) )
2724oveqd 5961 . . . . . . . . . . . 12  |-  ( ( ( g  =  G  /\  b  =  X )  /\  p  = 
.+  )  ->  (
y p x )  =  ( y  .+  x ) )
2827eleq1d 2274 . . . . . . . . . . 11  |-  ( ( ( g  =  G  /\  b  =  X )  /\  p  = 
.+  )  ->  (
( y p x )  e.  s  <->  ( y  .+  x )  e.  s ) )
2926, 28bibi12d 235 . . . . . . . . . 10  |-  ( ( ( g  =  G  /\  b  =  X )  /\  p  = 
.+  )  ->  (
( ( x p y )  e.  s  <-> 
( y p x )  e.  s )  <-> 
( ( x  .+  y )  e.  s  <-> 
( y  .+  x
)  e.  s ) ) )
3023, 29raleqbidv 2718 . . . . . . . . 9  |-  ( ( ( g  =  G  /\  b  =  X )  /\  p  = 
.+  )  ->  ( A. y  e.  b 
( ( x p y )  e.  s  <-> 
( y p x )  e.  s )  <->  A. y  e.  X  ( ( x  .+  y )  e.  s  <-> 
( y  .+  x
)  e.  s ) ) )
3123, 30raleqbidv 2718 . . . . . . . 8  |-  ( ( ( g  =  G  /\  b  =  X )  /\  p  = 
.+  )  ->  ( A. x  e.  b  A. y  e.  b 
( ( x p y )  e.  s  <-> 
( y p x )  e.  s )  <->  A. x  e.  X  A. y  e.  X  ( ( x  .+  y )  e.  s  <-> 
( y  .+  x
)  e.  s ) ) )
3218, 22, 31sbcied2 3036 . . . . . . 7  |-  ( ( g  =  G  /\  b  =  X )  ->  ( [. ( +g  `  g )  /  p ]. A. x  e.  b 
A. y  e.  b  ( ( x p y )  e.  s  <-> 
( y p x )  e.  s )  <->  A. x  e.  X  A. y  e.  X  ( ( x  .+  y )  e.  s  <-> 
( y  .+  x
)  e.  s ) ) )
3311, 14, 32sbcied2 3036 . . . . . 6  |-  ( g  =  G  ->  ( [. ( Base `  g
)  /  b ]. [. ( +g  `  g
)  /  p ]. A. x  e.  b  A. y  e.  b 
( ( x p y )  e.  s  <-> 
( y p x )  e.  s )  <->  A. x  e.  X  A. y  e.  X  ( ( x  .+  y )  e.  s  <-> 
( y  .+  x
)  e.  s ) ) )
345, 33rabeqbidv 2767 . . . . 5  |-  ( g  =  G  ->  { s  e.  (SubGrp `  g
)  |  [. ( Base `  g )  / 
b ]. [. ( +g  `  g )  /  p ]. A. x  e.  b 
A. y  e.  b  ( ( x p y )  e.  s  <-> 
( y p x )  e.  s ) }  =  { s  e.  (SubGrp `  G
)  |  A. x  e.  X  A. y  e.  X  ( (
x  .+  y )  e.  s  <->  ( y  .+  x )  e.  s ) } )
35 id 19 . . . . 5  |-  ( G  e.  Grp  ->  G  e.  Grp )
36 subgex 13512 . . . . . 6  |-  ( G  e.  Grp  ->  (SubGrp `  G )  e.  _V )
37 rabexg 4187 . . . . . 6  |-  ( (SubGrp `  G )  e.  _V  ->  { s  e.  (SubGrp `  G )  |  A. x  e.  X  A. y  e.  X  (
( x  .+  y
)  e.  s  <->  ( y  .+  x )  e.  s ) }  e.  _V )
3836, 37syl 14 . . . . 5  |-  ( G  e.  Grp  ->  { s  e.  (SubGrp `  G
)  |  A. x  e.  X  A. y  e.  X  ( (
x  .+  y )  e.  s  <->  ( y  .+  x )  e.  s ) }  e.  _V )
391, 34, 35, 38fvmptd3 5673 . . . 4  |-  ( G  e.  Grp  ->  (NrmSGrp `  G )  =  {
s  e.  (SubGrp `  G )  |  A. x  e.  X  A. y  e.  X  (
( x  .+  y
)  e.  s  <->  ( y  .+  x )  e.  s ) } )
4039eleq2d 2275 . . 3  |-  ( G  e.  Grp  ->  ( S  e.  (NrmSGrp `  G
)  <->  S  e.  { s  e.  (SubGrp `  G
)  |  A. x  e.  X  A. y  e.  X  ( (
x  .+  y )  e.  s  <->  ( y  .+  x )  e.  s ) } ) )
41 eleq2 2269 . . . . . 6  |-  ( s  =  S  ->  (
( x  .+  y
)  e.  s  <->  ( x  .+  y )  e.  S
) )
42 eleq2 2269 . . . . . 6  |-  ( s  =  S  ->  (
( y  .+  x
)  e.  s  <->  ( y  .+  x )  e.  S
) )
4341, 42bibi12d 235 . . . . 5  |-  ( s  =  S  ->  (
( ( x  .+  y )  e.  s  <-> 
( y  .+  x
)  e.  s )  <-> 
( ( x  .+  y )  e.  S  <->  ( y  .+  x )  e.  S ) ) )
44432ralbidv 2530 . . . 4  |-  ( s  =  S  ->  ( A. x  e.  X  A. y  e.  X  ( ( x  .+  y )  e.  s  <-> 
( y  .+  x
)  e.  s )  <->  A. x  e.  X  A. y  e.  X  ( ( x  .+  y )  e.  S  <->  ( y  .+  x )  e.  S ) ) )
4544elrab 2929 . . 3  |-  ( S  e.  { s  e.  (SubGrp `  G )  |  A. x  e.  X  A. y  e.  X  ( ( x  .+  y )  e.  s  <-> 
( y  .+  x
)  e.  s ) }  <->  ( S  e.  (SubGrp `  G )  /\  A. x  e.  X  A. y  e.  X  ( ( x  .+  y )  e.  S  <->  ( y  .+  x )  e.  S ) ) )
4640, 45bitrdi 196 . 2  |-  ( G  e.  Grp  ->  ( S  e.  (NrmSGrp `  G
)  <->  ( S  e.  (SubGrp `  G )  /\  A. x  e.  X  A. y  e.  X  ( ( x  .+  y )  e.  S  <->  ( y  .+  x )  e.  S ) ) ) )
472, 4, 46pm5.21nii 706 1  |-  ( S  e.  (NrmSGrp `  G
)  <->  ( S  e.  (SubGrp `  G )  /\  A. x  e.  X  A. y  e.  X  ( ( x  .+  y )  e.  S  <->  ( y  .+  x )  e.  S ) ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    = wceq 1373    e. wcel 2176   A.wral 2484   {crab 2488   _Vcvv 2772   [.wsbc 2998    Fn wfn 5266   ` cfv 5271  (class class class)co 5944   Basecbs 12832   +g cplusg 12909   Grpcgrp 13332  SubGrpcsubg 13503  NrmSGrpcnsg 13504
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-cnex 8016  ax-resscn 8017  ax-1re 8019  ax-addrcl 8022
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-fv 5279  df-ov 5947  df-inn 9037  df-2 9095  df-ndx 12835  df-slot 12836  df-base 12838  df-plusg 12922  df-subg 13506  df-nsg 13507
This theorem is referenced by:  isnsg2  13539  nsgbi  13540  nsgsubg  13541  isnsg4  13548  nmznsg  13549  ablnsg  13670
  Copyright terms: Public domain W3C validator