ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isnsg Unicode version

Theorem isnsg 13653
Description: Property of being a normal subgroup. (Contributed by Mario Carneiro, 18-Jan-2015.)
Hypotheses
Ref Expression
isnsg.1  |-  X  =  ( Base `  G
)
isnsg.2  |-  .+  =  ( +g  `  G )
Assertion
Ref Expression
isnsg  |-  ( S  e.  (NrmSGrp `  G
)  <->  ( S  e.  (SubGrp `  G )  /\  A. x  e.  X  A. y  e.  X  ( ( x  .+  y )  e.  S  <->  ( y  .+  x )  e.  S ) ) )
Distinct variable groups:    x, y, G   
x,  .+ , y    x, S, y    x, X, y

Proof of Theorem isnsg
Dummy variables  g  b  p  s are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-nsg 13622 . . 3  |- NrmSGrp  =  ( g  e.  Grp  |->  { s  e.  (SubGrp `  g )  |  [. ( Base `  g )  /  b ]. [. ( +g  `  g )  /  p ]. A. x  e.  b  A. y  e.  b  ( ( x p y )  e.  s  <->  ( y p x )  e.  s ) } )
21mptrcl 5685 . 2  |-  ( S  e.  (NrmSGrp `  G
)  ->  G  e.  Grp )
3 subgrcl 13630 . . 3  |-  ( S  e.  (SubGrp `  G
)  ->  G  e.  Grp )
43adantr 276 . 2  |-  ( ( S  e.  (SubGrp `  G )  /\  A. x  e.  X  A. y  e.  X  (
( x  .+  y
)  e.  S  <->  ( y  .+  x )  e.  S
) )  ->  G  e.  Grp )
5 fveq2 5599 . . . . . 6  |-  ( g  =  G  ->  (SubGrp `  g )  =  (SubGrp `  G ) )
6 basfn 13005 . . . . . . . . . 10  |-  Base  Fn  _V
7 funfvex 5616 . . . . . . . . . . 11  |-  ( ( Fun  Base  /\  g  e.  dom  Base )  ->  ( Base `  g )  e. 
_V )
87funfni 5395 . . . . . . . . . 10  |-  ( (
Base  Fn  _V  /\  g  e.  _V )  ->  ( Base `  g )  e. 
_V )
96, 8mpan 424 . . . . . . . . 9  |-  ( g  e.  _V  ->  ( Base `  g )  e. 
_V )
109elv 2780 . . . . . . . 8  |-  ( Base `  g )  e.  _V
1110a1i 9 . . . . . . 7  |-  ( g  =  G  ->  ( Base `  g )  e. 
_V )
12 fveq2 5599 . . . . . . . 8  |-  ( g  =  G  ->  ( Base `  g )  =  ( Base `  G
) )
13 isnsg.1 . . . . . . . 8  |-  X  =  ( Base `  G
)
1412, 13eqtr4di 2258 . . . . . . 7  |-  ( g  =  G  ->  ( Base `  g )  =  X )
15 plusgslid 13059 . . . . . . . . . . 11  |-  ( +g  = Slot  ( +g  `  ndx )  /\  ( +g  `  ndx )  e.  NN )
1615slotex 12974 . . . . . . . . . 10  |-  ( g  e.  _V  ->  ( +g  `  g )  e. 
_V )
1716elv 2780 . . . . . . . . 9  |-  ( +g  `  g )  e.  _V
1817a1i 9 . . . . . . . 8  |-  ( ( g  =  G  /\  b  =  X )  ->  ( +g  `  g
)  e.  _V )
19 simpl 109 . . . . . . . . . 10  |-  ( ( g  =  G  /\  b  =  X )  ->  g  =  G )
2019fveq2d 5603 . . . . . . . . 9  |-  ( ( g  =  G  /\  b  =  X )  ->  ( +g  `  g
)  =  ( +g  `  G ) )
21 isnsg.2 . . . . . . . . 9  |-  .+  =  ( +g  `  G )
2220, 21eqtr4di 2258 . . . . . . . 8  |-  ( ( g  =  G  /\  b  =  X )  ->  ( +g  `  g
)  =  .+  )
23 simplr 528 . . . . . . . . 9  |-  ( ( ( g  =  G  /\  b  =  X )  /\  p  = 
.+  )  ->  b  =  X )
24 simpr 110 . . . . . . . . . . . . 13  |-  ( ( ( g  =  G  /\  b  =  X )  /\  p  = 
.+  )  ->  p  =  .+  )
2524oveqd 5984 . . . . . . . . . . . 12  |-  ( ( ( g  =  G  /\  b  =  X )  /\  p  = 
.+  )  ->  (
x p y )  =  ( x  .+  y ) )
2625eleq1d 2276 . . . . . . . . . . 11  |-  ( ( ( g  =  G  /\  b  =  X )  /\  p  = 
.+  )  ->  (
( x p y )  e.  s  <->  ( x  .+  y )  e.  s ) )
2724oveqd 5984 . . . . . . . . . . . 12  |-  ( ( ( g  =  G  /\  b  =  X )  /\  p  = 
.+  )  ->  (
y p x )  =  ( y  .+  x ) )
2827eleq1d 2276 . . . . . . . . . . 11  |-  ( ( ( g  =  G  /\  b  =  X )  /\  p  = 
.+  )  ->  (
( y p x )  e.  s  <->  ( y  .+  x )  e.  s ) )
2926, 28bibi12d 235 . . . . . . . . . 10  |-  ( ( ( g  =  G  /\  b  =  X )  /\  p  = 
.+  )  ->  (
( ( x p y )  e.  s  <-> 
( y p x )  e.  s )  <-> 
( ( x  .+  y )  e.  s  <-> 
( y  .+  x
)  e.  s ) ) )
3023, 29raleqbidv 2721 . . . . . . . . 9  |-  ( ( ( g  =  G  /\  b  =  X )  /\  p  = 
.+  )  ->  ( A. y  e.  b 
( ( x p y )  e.  s  <-> 
( y p x )  e.  s )  <->  A. y  e.  X  ( ( x  .+  y )  e.  s  <-> 
( y  .+  x
)  e.  s ) ) )
3123, 30raleqbidv 2721 . . . . . . . 8  |-  ( ( ( g  =  G  /\  b  =  X )  /\  p  = 
.+  )  ->  ( A. x  e.  b  A. y  e.  b 
( ( x p y )  e.  s  <-> 
( y p x )  e.  s )  <->  A. x  e.  X  A. y  e.  X  ( ( x  .+  y )  e.  s  <-> 
( y  .+  x
)  e.  s ) ) )
3218, 22, 31sbcied2 3043 . . . . . . 7  |-  ( ( g  =  G  /\  b  =  X )  ->  ( [. ( +g  `  g )  /  p ]. A. x  e.  b 
A. y  e.  b  ( ( x p y )  e.  s  <-> 
( y p x )  e.  s )  <->  A. x  e.  X  A. y  e.  X  ( ( x  .+  y )  e.  s  <-> 
( y  .+  x
)  e.  s ) ) )
3311, 14, 32sbcied2 3043 . . . . . 6  |-  ( g  =  G  ->  ( [. ( Base `  g
)  /  b ]. [. ( +g  `  g
)  /  p ]. A. x  e.  b  A. y  e.  b 
( ( x p y )  e.  s  <-> 
( y p x )  e.  s )  <->  A. x  e.  X  A. y  e.  X  ( ( x  .+  y )  e.  s  <-> 
( y  .+  x
)  e.  s ) ) )
345, 33rabeqbidv 2771 . . . . 5  |-  ( g  =  G  ->  { s  e.  (SubGrp `  g
)  |  [. ( Base `  g )  / 
b ]. [. ( +g  `  g )  /  p ]. A. x  e.  b 
A. y  e.  b  ( ( x p y )  e.  s  <-> 
( y p x )  e.  s ) }  =  { s  e.  (SubGrp `  G
)  |  A. x  e.  X  A. y  e.  X  ( (
x  .+  y )  e.  s  <->  ( y  .+  x )  e.  s ) } )
35 id 19 . . . . 5  |-  ( G  e.  Grp  ->  G  e.  Grp )
36 subgex 13627 . . . . . 6  |-  ( G  e.  Grp  ->  (SubGrp `  G )  e.  _V )
37 rabexg 4203 . . . . . 6  |-  ( (SubGrp `  G )  e.  _V  ->  { s  e.  (SubGrp `  G )  |  A. x  e.  X  A. y  e.  X  (
( x  .+  y
)  e.  s  <->  ( y  .+  x )  e.  s ) }  e.  _V )
3836, 37syl 14 . . . . 5  |-  ( G  e.  Grp  ->  { s  e.  (SubGrp `  G
)  |  A. x  e.  X  A. y  e.  X  ( (
x  .+  y )  e.  s  <->  ( y  .+  x )  e.  s ) }  e.  _V )
391, 34, 35, 38fvmptd3 5696 . . . 4  |-  ( G  e.  Grp  ->  (NrmSGrp `  G )  =  {
s  e.  (SubGrp `  G )  |  A. x  e.  X  A. y  e.  X  (
( x  .+  y
)  e.  s  <->  ( y  .+  x )  e.  s ) } )
4039eleq2d 2277 . . 3  |-  ( G  e.  Grp  ->  ( S  e.  (NrmSGrp `  G
)  <->  S  e.  { s  e.  (SubGrp `  G
)  |  A. x  e.  X  A. y  e.  X  ( (
x  .+  y )  e.  s  <->  ( y  .+  x )  e.  s ) } ) )
41 eleq2 2271 . . . . . 6  |-  ( s  =  S  ->  (
( x  .+  y
)  e.  s  <->  ( x  .+  y )  e.  S
) )
42 eleq2 2271 . . . . . 6  |-  ( s  =  S  ->  (
( y  .+  x
)  e.  s  <->  ( y  .+  x )  e.  S
) )
4341, 42bibi12d 235 . . . . 5  |-  ( s  =  S  ->  (
( ( x  .+  y )  e.  s  <-> 
( y  .+  x
)  e.  s )  <-> 
( ( x  .+  y )  e.  S  <->  ( y  .+  x )  e.  S ) ) )
44432ralbidv 2532 . . . 4  |-  ( s  =  S  ->  ( A. x  e.  X  A. y  e.  X  ( ( x  .+  y )  e.  s  <-> 
( y  .+  x
)  e.  s )  <->  A. x  e.  X  A. y  e.  X  ( ( x  .+  y )  e.  S  <->  ( y  .+  x )  e.  S ) ) )
4544elrab 2936 . . 3  |-  ( S  e.  { s  e.  (SubGrp `  G )  |  A. x  e.  X  A. y  e.  X  ( ( x  .+  y )  e.  s  <-> 
( y  .+  x
)  e.  s ) }  <->  ( S  e.  (SubGrp `  G )  /\  A. x  e.  X  A. y  e.  X  ( ( x  .+  y )  e.  S  <->  ( y  .+  x )  e.  S ) ) )
4640, 45bitrdi 196 . 2  |-  ( G  e.  Grp  ->  ( S  e.  (NrmSGrp `  G
)  <->  ( S  e.  (SubGrp `  G )  /\  A. x  e.  X  A. y  e.  X  ( ( x  .+  y )  e.  S  <->  ( y  .+  x )  e.  S ) ) ) )
472, 4, 46pm5.21nii 706 1  |-  ( S  e.  (NrmSGrp `  G
)  <->  ( S  e.  (SubGrp `  G )  /\  A. x  e.  X  A. y  e.  X  ( ( x  .+  y )  e.  S  <->  ( y  .+  x )  e.  S ) ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    = wceq 1373    e. wcel 2178   A.wral 2486   {crab 2490   _Vcvv 2776   [.wsbc 3005    Fn wfn 5285   ` cfv 5290  (class class class)co 5967   Basecbs 12947   +g cplusg 13024   Grpcgrp 13447  SubGrpcsubg 13618  NrmSGrpcnsg 13619
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-cnex 8051  ax-resscn 8052  ax-1re 8054  ax-addrcl 8057
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-fv 5298  df-ov 5970  df-inn 9072  df-2 9130  df-ndx 12950  df-slot 12951  df-base 12953  df-plusg 13037  df-subg 13621  df-nsg 13622
This theorem is referenced by:  isnsg2  13654  nsgbi  13655  nsgsubg  13656  isnsg4  13663  nmznsg  13664  ablnsg  13785
  Copyright terms: Public domain W3C validator