| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > isnsg | Unicode version | ||
| Description: Property of being a normal subgroup. (Contributed by Mario Carneiro, 18-Jan-2015.) |
| Ref | Expression |
|---|---|
| isnsg.1 |
|
| isnsg.2 |
|
| Ref | Expression |
|---|---|
| isnsg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-nsg 13622 |
. . 3
| |
| 2 | 1 | mptrcl 5685 |
. 2
|
| 3 | subgrcl 13630 |
. . 3
| |
| 4 | 3 | adantr 276 |
. 2
|
| 5 | fveq2 5599 |
. . . . . 6
| |
| 6 | basfn 13005 |
. . . . . . . . . 10
| |
| 7 | funfvex 5616 |
. . . . . . . . . . 11
| |
| 8 | 7 | funfni 5395 |
. . . . . . . . . 10
|
| 9 | 6, 8 | mpan 424 |
. . . . . . . . 9
|
| 10 | 9 | elv 2780 |
. . . . . . . 8
|
| 11 | 10 | a1i 9 |
. . . . . . 7
|
| 12 | fveq2 5599 |
. . . . . . . 8
| |
| 13 | isnsg.1 |
. . . . . . . 8
| |
| 14 | 12, 13 | eqtr4di 2258 |
. . . . . . 7
|
| 15 | plusgslid 13059 |
. . . . . . . . . . 11
| |
| 16 | 15 | slotex 12974 |
. . . . . . . . . 10
|
| 17 | 16 | elv 2780 |
. . . . . . . . 9
|
| 18 | 17 | a1i 9 |
. . . . . . . 8
|
| 19 | simpl 109 |
. . . . . . . . . 10
| |
| 20 | 19 | fveq2d 5603 |
. . . . . . . . 9
|
| 21 | isnsg.2 |
. . . . . . . . 9
| |
| 22 | 20, 21 | eqtr4di 2258 |
. . . . . . . 8
|
| 23 | simplr 528 |
. . . . . . . . 9
| |
| 24 | simpr 110 |
. . . . . . . . . . . . 13
| |
| 25 | 24 | oveqd 5984 |
. . . . . . . . . . . 12
|
| 26 | 25 | eleq1d 2276 |
. . . . . . . . . . 11
|
| 27 | 24 | oveqd 5984 |
. . . . . . . . . . . 12
|
| 28 | 27 | eleq1d 2276 |
. . . . . . . . . . 11
|
| 29 | 26, 28 | bibi12d 235 |
. . . . . . . . . 10
|
| 30 | 23, 29 | raleqbidv 2721 |
. . . . . . . . 9
|
| 31 | 23, 30 | raleqbidv 2721 |
. . . . . . . 8
|
| 32 | 18, 22, 31 | sbcied2 3043 |
. . . . . . 7
|
| 33 | 11, 14, 32 | sbcied2 3043 |
. . . . . 6
|
| 34 | 5, 33 | rabeqbidv 2771 |
. . . . 5
|
| 35 | id 19 |
. . . . 5
| |
| 36 | subgex 13627 |
. . . . . 6
| |
| 37 | rabexg 4203 |
. . . . . 6
| |
| 38 | 36, 37 | syl 14 |
. . . . 5
|
| 39 | 1, 34, 35, 38 | fvmptd3 5696 |
. . . 4
|
| 40 | 39 | eleq2d 2277 |
. . 3
|
| 41 | eleq2 2271 |
. . . . . 6
| |
| 42 | eleq2 2271 |
. . . . . 6
| |
| 43 | 41, 42 | bibi12d 235 |
. . . . 5
|
| 44 | 43 | 2ralbidv 2532 |
. . . 4
|
| 45 | 44 | elrab 2936 |
. . 3
|
| 46 | 40, 45 | bitrdi 196 |
. 2
|
| 47 | 2, 4, 46 | pm5.21nii 706 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-cnex 8051 ax-resscn 8052 ax-1re 8054 ax-addrcl 8057 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-br 4060 df-opab 4122 df-mpt 4123 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-fv 5298 df-ov 5970 df-inn 9072 df-2 9130 df-ndx 12950 df-slot 12951 df-base 12953 df-plusg 13037 df-subg 13621 df-nsg 13622 |
| This theorem is referenced by: isnsg2 13654 nsgbi 13655 nsgsubg 13656 isnsg4 13663 nmznsg 13664 ablnsg 13785 |
| Copyright terms: Public domain | W3C validator |