ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  issgrp Unicode version

Theorem issgrp 13436
Description: The predicate "is a semigroup". (Contributed by FL, 2-Nov-2009.) (Revised by AV, 6-Jan-2020.)
Hypotheses
Ref Expression
issgrp.b  |-  B  =  ( Base `  M
)
issgrp.o  |-  .o.  =  ( +g  `  M )
Assertion
Ref Expression
issgrp  |-  ( M  e. Smgrp 
<->  ( M  e. Mgm  /\  A. x  e.  B  A. y  e.  B  A. z  e.  B  (
( x  .o.  y
)  .o.  z )  =  ( x  .o.  ( y  .o.  z
) ) ) )
Distinct variable groups:    x, B, y, z    x, M, y, z    x,  .o. , y, z

Proof of Theorem issgrp
Dummy variables  b  g  o are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 basfn 13091 . . . . 5  |-  Base  Fn  _V
2 vex 2802 . . . . 5  |-  g  e. 
_V
3 funfvex 5644 . . . . . 6  |-  ( ( Fun  Base  /\  g  e.  dom  Base )  ->  ( Base `  g )  e. 
_V )
43funfni 5423 . . . . 5  |-  ( (
Base  Fn  _V  /\  g  e.  _V )  ->  ( Base `  g )  e. 
_V )
51, 2, 4mp2an 426 . . . 4  |-  ( Base `  g )  e.  _V
65a1i 9 . . 3  |-  ( g  =  M  ->  ( Base `  g )  e. 
_V )
7 fveq2 5627 . . . 4  |-  ( g  =  M  ->  ( Base `  g )  =  ( Base `  M
) )
8 issgrp.b . . . 4  |-  B  =  ( Base `  M
)
97, 8eqtr4di 2280 . . 3  |-  ( g  =  M  ->  ( Base `  g )  =  B )
10 plusgslid 13145 . . . . . . 7  |-  ( +g  = Slot  ( +g  `  ndx )  /\  ( +g  `  ndx )  e.  NN )
1110slotex 13059 . . . . . 6  |-  ( g  e.  _V  ->  ( +g  `  g )  e. 
_V )
1211elv 2803 . . . . 5  |-  ( +g  `  g )  e.  _V
1312a1i 9 . . . 4  |-  ( ( g  =  M  /\  b  =  B )  ->  ( +g  `  g
)  e.  _V )
14 fveq2 5627 . . . . . 6  |-  ( g  =  M  ->  ( +g  `  g )  =  ( +g  `  M
) )
1514adantr 276 . . . . 5  |-  ( ( g  =  M  /\  b  =  B )  ->  ( +g  `  g
)  =  ( +g  `  M ) )
16 issgrp.o . . . . 5  |-  .o.  =  ( +g  `  M )
1715, 16eqtr4di 2280 . . . 4  |-  ( ( g  =  M  /\  b  =  B )  ->  ( +g  `  g
)  =  .o.  )
18 simplr 528 . . . . 5  |-  ( ( ( g  =  M  /\  b  =  B )  /\  o  =  .o.  )  ->  b  =  B )
19 id 19 . . . . . . . . . 10  |-  ( o  =  .o.  ->  o  =  .o.  )
20 oveq 6007 . . . . . . . . . 10  |-  ( o  =  .o.  ->  (
x o y )  =  ( x  .o.  y ) )
21 eqidd 2230 . . . . . . . . . 10  |-  ( o  =  .o.  ->  z  =  z )
2219, 20, 21oveq123d 6022 . . . . . . . . 9  |-  ( o  =  .o.  ->  (
( x o y ) o z )  =  ( ( x  .o.  y )  .o.  z ) )
23 eqidd 2230 . . . . . . . . . 10  |-  ( o  =  .o.  ->  x  =  x )
24 oveq 6007 . . . . . . . . . 10  |-  ( o  =  .o.  ->  (
y o z )  =  ( y  .o.  z ) )
2519, 23, 24oveq123d 6022 . . . . . . . . 9  |-  ( o  =  .o.  ->  (
x o ( y o z ) )  =  ( x  .o.  ( y  .o.  z
) ) )
2622, 25eqeq12d 2244 . . . . . . . 8  |-  ( o  =  .o.  ->  (
( ( x o y ) o z )  =  ( x o ( y o z ) )  <->  ( (
x  .o.  y )  .o.  z )  =  ( x  .o.  ( y  .o.  z ) ) ) )
2726adantl 277 . . . . . . 7  |-  ( ( ( g  =  M  /\  b  =  B )  /\  o  =  .o.  )  ->  (
( ( x o y ) o z )  =  ( x o ( y o z ) )  <->  ( (
x  .o.  y )  .o.  z )  =  ( x  .o.  ( y  .o.  z ) ) ) )
2818, 27raleqbidv 2744 . . . . . 6  |-  ( ( ( g  =  M  /\  b  =  B )  /\  o  =  .o.  )  ->  ( A. z  e.  b 
( ( x o y ) o z )  =  ( x o ( y o z ) )  <->  A. z  e.  B  ( (
x  .o.  y )  .o.  z )  =  ( x  .o.  ( y  .o.  z ) ) ) )
2918, 28raleqbidv 2744 . . . . 5  |-  ( ( ( g  =  M  /\  b  =  B )  /\  o  =  .o.  )  ->  ( A. y  e.  b  A. z  e.  b 
( ( x o y ) o z )  =  ( x o ( y o z ) )  <->  A. y  e.  B  A. z  e.  B  ( (
x  .o.  y )  .o.  z )  =  ( x  .o.  ( y  .o.  z ) ) ) )
3018, 29raleqbidv 2744 . . . 4  |-  ( ( ( g  =  M  /\  b  =  B )  /\  o  =  .o.  )  ->  ( A. x  e.  b  A. y  e.  b  A. z  e.  b 
( ( x o y ) o z )  =  ( x o ( y o z ) )  <->  A. x  e.  B  A. y  e.  B  A. z  e.  B  ( (
x  .o.  y )  .o.  z )  =  ( x  .o.  ( y  .o.  z ) ) ) )
3113, 17, 30sbcied2 3066 . . 3  |-  ( ( g  =  M  /\  b  =  B )  ->  ( [. ( +g  `  g )  /  o ]. A. x  e.  b 
A. y  e.  b 
A. z  e.  b  ( ( x o y ) o z )  =  ( x o ( y o z ) )  <->  A. x  e.  B  A. y  e.  B  A. z  e.  B  ( (
x  .o.  y )  .o.  z )  =  ( x  .o.  ( y  .o.  z ) ) ) )
326, 9, 31sbcied2 3066 . 2  |-  ( g  =  M  ->  ( [. ( Base `  g
)  /  b ]. [. ( +g  `  g
)  /  o ]. A. x  e.  b  A. y  e.  b  A. z  e.  b 
( ( x o y ) o z )  =  ( x o ( y o z ) )  <->  A. x  e.  B  A. y  e.  B  A. z  e.  B  ( (
x  .o.  y )  .o.  z )  =  ( x  .o.  ( y  .o.  z ) ) ) )
33 df-sgrp 13435 . 2  |- Smgrp  =  {
g  e. Mgm  |  [. ( Base `  g )  / 
b ]. [. ( +g  `  g )  /  o ]. A. x  e.  b 
A. y  e.  b 
A. z  e.  b  ( ( x o y ) o z )  =  ( x o ( y o z ) ) }
3432, 33elrab2 2962 1  |-  ( M  e. Smgrp 
<->  ( M  e. Mgm  /\  A. x  e.  B  A. y  e.  B  A. z  e.  B  (
( x  .o.  y
)  .o.  z )  =  ( x  .o.  ( y  .o.  z
) ) ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    = wceq 1395    e. wcel 2200   A.wral 2508   _Vcvv 2799   [.wsbc 3028    Fn wfn 5313   ` cfv 5318  (class class class)co 6001   Basecbs 13032   +g cplusg 13110  Mgmcmgm 13387  Smgrpcsgrp 13434
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-cnex 8090  ax-resscn 8091  ax-1re 8093  ax-addrcl 8096
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-iota 5278  df-fun 5320  df-fn 5321  df-fv 5326  df-ov 6004  df-inn 9111  df-2 9169  df-ndx 13035  df-slot 13036  df-base 13038  df-plusg 13123  df-sgrp 13435
This theorem is referenced by:  issgrpv  13437  issgrpn0  13438  isnsgrp  13439  sgrpmgm  13440  sgrpass  13441  sgrp0  13443  sgrp1  13444  rnglidlmsgrp  14461
  Copyright terms: Public domain W3C validator