ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  issgrp Unicode version

Theorem issgrp 12644
Description: The predicate "is a semigroup". (Contributed by FL, 2-Nov-2009.) (Revised by AV, 6-Jan-2020.)
Hypotheses
Ref Expression
issgrp.b  |-  B  =  ( Base `  M
)
issgrp.o  |-  .o.  =  ( +g  `  M )
Assertion
Ref Expression
issgrp  |-  ( M  e. Smgrp 
<->  ( M  e. Mgm  /\  A. x  e.  B  A. y  e.  B  A. z  e.  B  (
( x  .o.  y
)  .o.  z )  =  ( x  .o.  ( y  .o.  z
) ) ) )
Distinct variable groups:    x, B, y, z    x, M, y, z    x,  .o. , y, z

Proof of Theorem issgrp
Dummy variables  b  g  o are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 basfn 12473 . . . . 5  |-  Base  Fn  _V
2 vex 2733 . . . . 5  |-  g  e. 
_V
3 funfvex 5513 . . . . . 6  |-  ( ( Fun  Base  /\  g  e.  dom  Base )  ->  ( Base `  g )  e. 
_V )
43funfni 5298 . . . . 5  |-  ( (
Base  Fn  _V  /\  g  e.  _V )  ->  ( Base `  g )  e. 
_V )
51, 2, 4mp2an 424 . . . 4  |-  ( Base `  g )  e.  _V
65a1i 9 . . 3  |-  ( g  =  M  ->  ( Base `  g )  e. 
_V )
7 fveq2 5496 . . . 4  |-  ( g  =  M  ->  ( Base `  g )  =  ( Base `  M
) )
8 issgrp.b . . . 4  |-  B  =  ( Base `  M
)
97, 8eqtr4di 2221 . . 3  |-  ( g  =  M  ->  ( Base `  g )  =  B )
10 plusgslid 12513 . . . . . . 7  |-  ( +g  = Slot  ( +g  `  ndx )  /\  ( +g  `  ndx )  e.  NN )
1110slotex 12443 . . . . . 6  |-  ( g  e.  _V  ->  ( +g  `  g )  e. 
_V )
1211elv 2734 . . . . 5  |-  ( +g  `  g )  e.  _V
1312a1i 9 . . . 4  |-  ( ( g  =  M  /\  b  =  B )  ->  ( +g  `  g
)  e.  _V )
14 fveq2 5496 . . . . . 6  |-  ( g  =  M  ->  ( +g  `  g )  =  ( +g  `  M
) )
1514adantr 274 . . . . 5  |-  ( ( g  =  M  /\  b  =  B )  ->  ( +g  `  g
)  =  ( +g  `  M ) )
16 issgrp.o . . . . 5  |-  .o.  =  ( +g  `  M )
1715, 16eqtr4di 2221 . . . 4  |-  ( ( g  =  M  /\  b  =  B )  ->  ( +g  `  g
)  =  .o.  )
18 simplr 525 . . . . 5  |-  ( ( ( g  =  M  /\  b  =  B )  /\  o  =  .o.  )  ->  b  =  B )
19 id 19 . . . . . . . . . 10  |-  ( o  =  .o.  ->  o  =  .o.  )
20 oveq 5859 . . . . . . . . . 10  |-  ( o  =  .o.  ->  (
x o y )  =  ( x  .o.  y ) )
21 eqidd 2171 . . . . . . . . . 10  |-  ( o  =  .o.  ->  z  =  z )
2219, 20, 21oveq123d 5874 . . . . . . . . 9  |-  ( o  =  .o.  ->  (
( x o y ) o z )  =  ( ( x  .o.  y )  .o.  z ) )
23 eqidd 2171 . . . . . . . . . 10  |-  ( o  =  .o.  ->  x  =  x )
24 oveq 5859 . . . . . . . . . 10  |-  ( o  =  .o.  ->  (
y o z )  =  ( y  .o.  z ) )
2519, 23, 24oveq123d 5874 . . . . . . . . 9  |-  ( o  =  .o.  ->  (
x o ( y o z ) )  =  ( x  .o.  ( y  .o.  z
) ) )
2622, 25eqeq12d 2185 . . . . . . . 8  |-  ( o  =  .o.  ->  (
( ( x o y ) o z )  =  ( x o ( y o z ) )  <->  ( (
x  .o.  y )  .o.  z )  =  ( x  .o.  ( y  .o.  z ) ) ) )
2726adantl 275 . . . . . . 7  |-  ( ( ( g  =  M  /\  b  =  B )  /\  o  =  .o.  )  ->  (
( ( x o y ) o z )  =  ( x o ( y o z ) )  <->  ( (
x  .o.  y )  .o.  z )  =  ( x  .o.  ( y  .o.  z ) ) ) )
2818, 27raleqbidv 2677 . . . . . 6  |-  ( ( ( g  =  M  /\  b  =  B )  /\  o  =  .o.  )  ->  ( A. z  e.  b 
( ( x o y ) o z )  =  ( x o ( y o z ) )  <->  A. z  e.  B  ( (
x  .o.  y )  .o.  z )  =  ( x  .o.  ( y  .o.  z ) ) ) )
2918, 28raleqbidv 2677 . . . . 5  |-  ( ( ( g  =  M  /\  b  =  B )  /\  o  =  .o.  )  ->  ( A. y  e.  b  A. z  e.  b 
( ( x o y ) o z )  =  ( x o ( y o z ) )  <->  A. y  e.  B  A. z  e.  B  ( (
x  .o.  y )  .o.  z )  =  ( x  .o.  ( y  .o.  z ) ) ) )
3018, 29raleqbidv 2677 . . . 4  |-  ( ( ( g  =  M  /\  b  =  B )  /\  o  =  .o.  )  ->  ( A. x  e.  b  A. y  e.  b  A. z  e.  b 
( ( x o y ) o z )  =  ( x o ( y o z ) )  <->  A. x  e.  B  A. y  e.  B  A. z  e.  B  ( (
x  .o.  y )  .o.  z )  =  ( x  .o.  ( y  .o.  z ) ) ) )
3113, 17, 30sbcied2 2992 . . 3  |-  ( ( g  =  M  /\  b  =  B )  ->  ( [. ( +g  `  g )  /  o ]. A. x  e.  b 
A. y  e.  b 
A. z  e.  b  ( ( x o y ) o z )  =  ( x o ( y o z ) )  <->  A. x  e.  B  A. y  e.  B  A. z  e.  B  ( (
x  .o.  y )  .o.  z )  =  ( x  .o.  ( y  .o.  z ) ) ) )
326, 9, 31sbcied2 2992 . 2  |-  ( g  =  M  ->  ( [. ( Base `  g
)  /  b ]. [. ( +g  `  g
)  /  o ]. A. x  e.  b  A. y  e.  b  A. z  e.  b 
( ( x o y ) o z )  =  ( x o ( y o z ) )  <->  A. x  e.  B  A. y  e.  B  A. z  e.  B  ( (
x  .o.  y )  .o.  z )  =  ( x  .o.  ( y  .o.  z ) ) ) )
33 df-sgrp 12643 . 2  |- Smgrp  =  {
g  e. Mgm  |  [. ( Base `  g )  / 
b ]. [. ( +g  `  g )  /  o ]. A. x  e.  b 
A. y  e.  b 
A. z  e.  b  ( ( x o y ) o z )  =  ( x o ( y o z ) ) }
3432, 33elrab2 2889 1  |-  ( M  e. Smgrp 
<->  ( M  e. Mgm  /\  A. x  e.  B  A. y  e.  B  A. z  e.  B  (
( x  .o.  y
)  .o.  z )  =  ( x  .o.  ( y  .o.  z
) ) ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 103    <-> wb 104    = wceq 1348    e. wcel 2141   A.wral 2448   _Vcvv 2730   [.wsbc 2955    Fn wfn 5193   ` cfv 5198  (class class class)co 5853   Basecbs 12416   +g cplusg 12480  Mgmcmgm 12608  Smgrpcsgrp 12642
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-cnex 7865  ax-resscn 7866  ax-1re 7868  ax-addrcl 7871
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-rab 2457  df-v 2732  df-sbc 2956  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-iota 5160  df-fun 5200  df-fn 5201  df-fv 5206  df-ov 5856  df-inn 8879  df-2 8937  df-ndx 12419  df-slot 12420  df-base 12422  df-plusg 12493  df-sgrp 12643
This theorem is referenced by:  issgrpv  12645  issgrpn0  12646  isnsgrp  12647  sgrpmgm  12648  sgrpass  12649  sgrp0  12650  sgrp1  12651
  Copyright terms: Public domain W3C validator