ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  issgrp Unicode version

Theorem issgrp 12986
Description: The predicate "is a semigroup". (Contributed by FL, 2-Nov-2009.) (Revised by AV, 6-Jan-2020.)
Hypotheses
Ref Expression
issgrp.b  |-  B  =  ( Base `  M
)
issgrp.o  |-  .o.  =  ( +g  `  M )
Assertion
Ref Expression
issgrp  |-  ( M  e. Smgrp 
<->  ( M  e. Mgm  /\  A. x  e.  B  A. y  e.  B  A. z  e.  B  (
( x  .o.  y
)  .o.  z )  =  ( x  .o.  ( y  .o.  z
) ) ) )
Distinct variable groups:    x, B, y, z    x, M, y, z    x,  .o. , y, z

Proof of Theorem issgrp
Dummy variables  b  g  o are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 basfn 12676 . . . . 5  |-  Base  Fn  _V
2 vex 2763 . . . . 5  |-  g  e. 
_V
3 funfvex 5571 . . . . . 6  |-  ( ( Fun  Base  /\  g  e.  dom  Base )  ->  ( Base `  g )  e. 
_V )
43funfni 5354 . . . . 5  |-  ( (
Base  Fn  _V  /\  g  e.  _V )  ->  ( Base `  g )  e. 
_V )
51, 2, 4mp2an 426 . . . 4  |-  ( Base `  g )  e.  _V
65a1i 9 . . 3  |-  ( g  =  M  ->  ( Base `  g )  e. 
_V )
7 fveq2 5554 . . . 4  |-  ( g  =  M  ->  ( Base `  g )  =  ( Base `  M
) )
8 issgrp.b . . . 4  |-  B  =  ( Base `  M
)
97, 8eqtr4di 2244 . . 3  |-  ( g  =  M  ->  ( Base `  g )  =  B )
10 plusgslid 12730 . . . . . . 7  |-  ( +g  = Slot  ( +g  `  ndx )  /\  ( +g  `  ndx )  e.  NN )
1110slotex 12645 . . . . . 6  |-  ( g  e.  _V  ->  ( +g  `  g )  e. 
_V )
1211elv 2764 . . . . 5  |-  ( +g  `  g )  e.  _V
1312a1i 9 . . . 4  |-  ( ( g  =  M  /\  b  =  B )  ->  ( +g  `  g
)  e.  _V )
14 fveq2 5554 . . . . . 6  |-  ( g  =  M  ->  ( +g  `  g )  =  ( +g  `  M
) )
1514adantr 276 . . . . 5  |-  ( ( g  =  M  /\  b  =  B )  ->  ( +g  `  g
)  =  ( +g  `  M ) )
16 issgrp.o . . . . 5  |-  .o.  =  ( +g  `  M )
1715, 16eqtr4di 2244 . . . 4  |-  ( ( g  =  M  /\  b  =  B )  ->  ( +g  `  g
)  =  .o.  )
18 simplr 528 . . . . 5  |-  ( ( ( g  =  M  /\  b  =  B )  /\  o  =  .o.  )  ->  b  =  B )
19 id 19 . . . . . . . . . 10  |-  ( o  =  .o.  ->  o  =  .o.  )
20 oveq 5924 . . . . . . . . . 10  |-  ( o  =  .o.  ->  (
x o y )  =  ( x  .o.  y ) )
21 eqidd 2194 . . . . . . . . . 10  |-  ( o  =  .o.  ->  z  =  z )
2219, 20, 21oveq123d 5939 . . . . . . . . 9  |-  ( o  =  .o.  ->  (
( x o y ) o z )  =  ( ( x  .o.  y )  .o.  z ) )
23 eqidd 2194 . . . . . . . . . 10  |-  ( o  =  .o.  ->  x  =  x )
24 oveq 5924 . . . . . . . . . 10  |-  ( o  =  .o.  ->  (
y o z )  =  ( y  .o.  z ) )
2519, 23, 24oveq123d 5939 . . . . . . . . 9  |-  ( o  =  .o.  ->  (
x o ( y o z ) )  =  ( x  .o.  ( y  .o.  z
) ) )
2622, 25eqeq12d 2208 . . . . . . . 8  |-  ( o  =  .o.  ->  (
( ( x o y ) o z )  =  ( x o ( y o z ) )  <->  ( (
x  .o.  y )  .o.  z )  =  ( x  .o.  ( y  .o.  z ) ) ) )
2726adantl 277 . . . . . . 7  |-  ( ( ( g  =  M  /\  b  =  B )  /\  o  =  .o.  )  ->  (
( ( x o y ) o z )  =  ( x o ( y o z ) )  <->  ( (
x  .o.  y )  .o.  z )  =  ( x  .o.  ( y  .o.  z ) ) ) )
2818, 27raleqbidv 2706 . . . . . 6  |-  ( ( ( g  =  M  /\  b  =  B )  /\  o  =  .o.  )  ->  ( A. z  e.  b 
( ( x o y ) o z )  =  ( x o ( y o z ) )  <->  A. z  e.  B  ( (
x  .o.  y )  .o.  z )  =  ( x  .o.  ( y  .o.  z ) ) ) )
2918, 28raleqbidv 2706 . . . . 5  |-  ( ( ( g  =  M  /\  b  =  B )  /\  o  =  .o.  )  ->  ( A. y  e.  b  A. z  e.  b 
( ( x o y ) o z )  =  ( x o ( y o z ) )  <->  A. y  e.  B  A. z  e.  B  ( (
x  .o.  y )  .o.  z )  =  ( x  .o.  ( y  .o.  z ) ) ) )
3018, 29raleqbidv 2706 . . . 4  |-  ( ( ( g  =  M  /\  b  =  B )  /\  o  =  .o.  )  ->  ( A. x  e.  b  A. y  e.  b  A. z  e.  b 
( ( x o y ) o z )  =  ( x o ( y o z ) )  <->  A. x  e.  B  A. y  e.  B  A. z  e.  B  ( (
x  .o.  y )  .o.  z )  =  ( x  .o.  ( y  .o.  z ) ) ) )
3113, 17, 30sbcied2 3023 . . 3  |-  ( ( g  =  M  /\  b  =  B )  ->  ( [. ( +g  `  g )  /  o ]. A. x  e.  b 
A. y  e.  b 
A. z  e.  b  ( ( x o y ) o z )  =  ( x o ( y o z ) )  <->  A. x  e.  B  A. y  e.  B  A. z  e.  B  ( (
x  .o.  y )  .o.  z )  =  ( x  .o.  ( y  .o.  z ) ) ) )
326, 9, 31sbcied2 3023 . 2  |-  ( g  =  M  ->  ( [. ( Base `  g
)  /  b ]. [. ( +g  `  g
)  /  o ]. A. x  e.  b  A. y  e.  b  A. z  e.  b 
( ( x o y ) o z )  =  ( x o ( y o z ) )  <->  A. x  e.  B  A. y  e.  B  A. z  e.  B  ( (
x  .o.  y )  .o.  z )  =  ( x  .o.  ( y  .o.  z ) ) ) )
33 df-sgrp 12985 . 2  |- Smgrp  =  {
g  e. Mgm  |  [. ( Base `  g )  / 
b ]. [. ( +g  `  g )  /  o ]. A. x  e.  b 
A. y  e.  b 
A. z  e.  b  ( ( x o y ) o z )  =  ( x o ( y o z ) ) }
3432, 33elrab2 2919 1  |-  ( M  e. Smgrp 
<->  ( M  e. Mgm  /\  A. x  e.  B  A. y  e.  B  A. z  e.  B  (
( x  .o.  y
)  .o.  z )  =  ( x  .o.  ( y  .o.  z
) ) ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2164   A.wral 2472   _Vcvv 2760   [.wsbc 2985    Fn wfn 5249   ` cfv 5254  (class class class)co 5918   Basecbs 12618   +g cplusg 12695  Mgmcmgm 12937  Smgrpcsgrp 12984
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-cnex 7963  ax-resscn 7964  ax-1re 7966  ax-addrcl 7969
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2986  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-iota 5215  df-fun 5256  df-fn 5257  df-fv 5262  df-ov 5921  df-inn 8983  df-2 9041  df-ndx 12621  df-slot 12622  df-base 12624  df-plusg 12708  df-sgrp 12985
This theorem is referenced by:  issgrpv  12987  issgrpn0  12988  isnsgrp  12989  sgrpmgm  12990  sgrpass  12991  sgrp0  12993  sgrp1  12994  rnglidlmsgrp  13993
  Copyright terms: Public domain W3C validator