Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > issgrp | Unicode version |
Description: The predicate "is a semigroup". (Contributed by FL, 2-Nov-2009.) (Revised by AV, 6-Jan-2020.) |
Ref | Expression |
---|---|
issgrp.b | |
issgrp.o |
Ref | Expression |
---|---|
issgrp | Smgrp Mgm |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | basfn 12451 | . . . . 5 | |
2 | vex 2729 | . . . . 5 | |
3 | funfvex 5503 | . . . . . 6 | |
4 | 3 | funfni 5288 | . . . . 5 |
5 | 1, 2, 4 | mp2an 423 | . . . 4 |
6 | 5 | a1i 9 | . . 3 |
7 | fveq2 5486 | . . . 4 | |
8 | issgrp.b | . . . 4 | |
9 | 7, 8 | eqtr4di 2217 | . . 3 |
10 | plusgslid 12490 | . . . . . . 7 Slot | |
11 | 10 | slotex 12421 | . . . . . 6 |
12 | 11 | elv 2730 | . . . . 5 |
13 | 12 | a1i 9 | . . . 4 |
14 | fveq2 5486 | . . . . . 6 | |
15 | 14 | adantr 274 | . . . . 5 |
16 | issgrp.o | . . . . 5 | |
17 | 15, 16 | eqtr4di 2217 | . . . 4 |
18 | simplr 520 | . . . . 5 | |
19 | id 19 | . . . . . . . . . 10 | |
20 | oveq 5848 | . . . . . . . . . 10 | |
21 | eqidd 2166 | . . . . . . . . . 10 | |
22 | 19, 20, 21 | oveq123d 5863 | . . . . . . . . 9 |
23 | eqidd 2166 | . . . . . . . . . 10 | |
24 | oveq 5848 | . . . . . . . . . 10 | |
25 | 19, 23, 24 | oveq123d 5863 | . . . . . . . . 9 |
26 | 22, 25 | eqeq12d 2180 | . . . . . . . 8 |
27 | 26 | adantl 275 | . . . . . . 7 |
28 | 18, 27 | raleqbidv 2673 | . . . . . 6 |
29 | 18, 28 | raleqbidv 2673 | . . . . 5 |
30 | 18, 29 | raleqbidv 2673 | . . . 4 |
31 | 13, 17, 30 | sbcied2 2988 | . . 3 |
32 | 6, 9, 31 | sbcied2 2988 | . 2 |
33 | df-sgrp 12620 | . 2 Smgrp Mgm | |
34 | 32, 33 | elrab2 2885 | 1 Smgrp Mgm |
Colors of variables: wff set class |
Syntax hints: wa 103 wb 104 wceq 1343 wcel 2136 wral 2444 cvv 2726 wsbc 2951 wfn 5183 cfv 5188 (class class class)co 5842 cbs 12394 cplusg 12457 Mgmcmgm 12585 Smgrpcsgrp 12619 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-cnex 7844 ax-resscn 7845 ax-1re 7847 ax-addrcl 7850 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-sbc 2952 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-iota 5153 df-fun 5190 df-fn 5191 df-fv 5196 df-ov 5845 df-inn 8858 df-2 8916 df-ndx 12397 df-slot 12398 df-base 12400 df-plusg 12470 df-sgrp 12620 |
This theorem is referenced by: issgrpv 12622 issgrpn0 12623 isnsgrp 12624 sgrpmgm 12625 sgrpass 12626 sgrp0 12627 sgrp1 12628 |
Copyright terms: Public domain | W3C validator |