ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbcied2 GIF version

Theorem sbcied2 3040
Description: Conversion of implicit substitution to explicit class substitution, deduction form. (Contributed by NM, 13-Dec-2014.)
Hypotheses
Ref Expression
sbcied2.1 (𝜑𝐴𝑉)
sbcied2.2 (𝜑𝐴 = 𝐵)
sbcied2.3 ((𝜑𝑥 = 𝐵) → (𝜓𝜒))
Assertion
Ref Expression
sbcied2 (𝜑 → ([𝐴 / 𝑥]𝜓𝜒))
Distinct variable groups:   𝑥,𝐴   𝜑,𝑥   𝜒,𝑥
Allowed substitution hints:   𝜓(𝑥)   𝐵(𝑥)   𝑉(𝑥)

Proof of Theorem sbcied2
StepHypRef Expression
1 sbcied2.1 . 2 (𝜑𝐴𝑉)
2 id 19 . . . 4 (𝑥 = 𝐴𝑥 = 𝐴)
3 sbcied2.2 . . . 4 (𝜑𝐴 = 𝐵)
42, 3sylan9eqr 2261 . . 3 ((𝜑𝑥 = 𝐴) → 𝑥 = 𝐵)
5 sbcied2.3 . . 3 ((𝜑𝑥 = 𝐵) → (𝜓𝜒))
64, 5syldan 282 . 2 ((𝜑𝑥 = 𝐴) → (𝜓𝜒))
71, 6sbcied 3039 1 (𝜑 → ([𝐴 / 𝑥]𝜓𝜒))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1373  wcel 2177  [wsbc 3002
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-v 2775  df-sbc 3003
This theorem is referenced by:  ismgm  13264  issgrp  13310  isnsg  13613  isrng  13771  isring  13837  isdomn  14106  isuhgrm  15742  isushgrm  15743  isupgren  15766  isumgren  15776
  Copyright terms: Public domain W3C validator