ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ismgm Unicode version

Theorem ismgm 13000
Description: The predicate "is a magma". (Contributed by FL, 2-Nov-2009.) (Revised by AV, 6-Jan-2020.)
Hypotheses
Ref Expression
ismgm.b  |-  B  =  ( Base `  M
)
ismgm.o  |-  .o.  =  ( +g  `  M )
Assertion
Ref Expression
ismgm  |-  ( M  e.  V  ->  ( M  e. Mgm  <->  A. x  e.  B  A. y  e.  B  ( x  .o.  y
)  e.  B ) )
Distinct variable groups:    x, B, y   
x, M, y    x,  .o. , y
Allowed substitution hints:    V( x, y)

Proof of Theorem ismgm
Dummy variables  b  m  o are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 basfn 12736 . . . . 5  |-  Base  Fn  _V
2 vex 2766 . . . . 5  |-  m  e. 
_V
3 funfvex 5575 . . . . . 6  |-  ( ( Fun  Base  /\  m  e.  dom  Base )  ->  ( Base `  m )  e. 
_V )
43funfni 5358 . . . . 5  |-  ( (
Base  Fn  _V  /\  m  e.  _V )  ->  ( Base `  m )  e. 
_V )
51, 2, 4mp2an 426 . . . 4  |-  ( Base `  m )  e.  _V
65a1i 9 . . 3  |-  ( m  =  M  ->  ( Base `  m )  e. 
_V )
7 fveq2 5558 . . . 4  |-  ( m  =  M  ->  ( Base `  m )  =  ( Base `  M
) )
8 ismgm.b . . . 4  |-  B  =  ( Base `  M
)
97, 8eqtr4di 2247 . . 3  |-  ( m  =  M  ->  ( Base `  m )  =  B )
10 plusgslid 12790 . . . . . . 7  |-  ( +g  = Slot  ( +g  `  ndx )  /\  ( +g  `  ndx )  e.  NN )
1110slotex 12705 . . . . . 6  |-  ( m  e.  _V  ->  ( +g  `  m )  e. 
_V )
1211elv 2767 . . . . 5  |-  ( +g  `  m )  e.  _V
1312a1i 9 . . . 4  |-  ( ( m  =  M  /\  b  =  B )  ->  ( +g  `  m
)  e.  _V )
14 fveq2 5558 . . . . . 6  |-  ( m  =  M  ->  ( +g  `  m )  =  ( +g  `  M
) )
1514adantr 276 . . . . 5  |-  ( ( m  =  M  /\  b  =  B )  ->  ( +g  `  m
)  =  ( +g  `  M ) )
16 ismgm.o . . . . 5  |-  .o.  =  ( +g  `  M )
1715, 16eqtr4di 2247 . . . 4  |-  ( ( m  =  M  /\  b  =  B )  ->  ( +g  `  m
)  =  .o.  )
18 simplr 528 . . . . 5  |-  ( ( ( m  =  M  /\  b  =  B )  /\  o  =  .o.  )  ->  b  =  B )
19 oveq 5928 . . . . . . . 8  |-  ( o  =  .o.  ->  (
x o y )  =  ( x  .o.  y ) )
2019adantl 277 . . . . . . 7  |-  ( ( ( m  =  M  /\  b  =  B )  /\  o  =  .o.  )  ->  (
x o y )  =  ( x  .o.  y ) )
2120, 18eleq12d 2267 . . . . . 6  |-  ( ( ( m  =  M  /\  b  =  B )  /\  o  =  .o.  )  ->  (
( x o y )  e.  b  <->  ( x  .o.  y )  e.  B
) )
2218, 21raleqbidv 2709 . . . . 5  |-  ( ( ( m  =  M  /\  b  =  B )  /\  o  =  .o.  )  ->  ( A. y  e.  b 
( x o y )  e.  b  <->  A. y  e.  B  ( x  .o.  y )  e.  B
) )
2318, 22raleqbidv 2709 . . . 4  |-  ( ( ( m  =  M  /\  b  =  B )  /\  o  =  .o.  )  ->  ( A. x  e.  b  A. y  e.  b 
( x o y )  e.  b  <->  A. x  e.  B  A. y  e.  B  ( x  .o.  y )  e.  B
) )
2413, 17, 23sbcied2 3027 . . 3  |-  ( ( m  =  M  /\  b  =  B )  ->  ( [. ( +g  `  m )  /  o ]. A. x  e.  b 
A. y  e.  b  ( x o y )  e.  b  <->  A. x  e.  B  A. y  e.  B  ( x  .o.  y )  e.  B
) )
256, 9, 24sbcied2 3027 . 2  |-  ( m  =  M  ->  ( [. ( Base `  m
)  /  b ]. [. ( +g  `  m
)  /  o ]. A. x  e.  b  A. y  e.  b 
( x o y )  e.  b  <->  A. x  e.  B  A. y  e.  B  ( x  .o.  y )  e.  B
) )
26 df-mgm 12999 . 2  |- Mgm  =  {
m  |  [. ( Base `  m )  / 
b ]. [. ( +g  `  m )  /  o ]. A. x  e.  b 
A. y  e.  b  ( x o y )  e.  b }
2725, 26elab2g 2911 1  |-  ( M  e.  V  ->  ( M  e. Mgm  <->  A. x  e.  B  A. y  e.  B  ( x  .o.  y
)  e.  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2167   A.wral 2475   _Vcvv 2763   [.wsbc 2989    Fn wfn 5253   ` cfv 5258  (class class class)co 5922   Basecbs 12678   +g cplusg 12755  Mgmcmgm 12997
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-cnex 7970  ax-resscn 7971  ax-1re 7973  ax-addrcl 7976
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-sbc 2990  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-iota 5219  df-fun 5260  df-fn 5261  df-fv 5266  df-ov 5925  df-inn 8991  df-2 9049  df-ndx 12681  df-slot 12682  df-base 12684  df-plusg 12768  df-mgm 12999
This theorem is referenced by:  ismgmn0  13001  mgmcl  13002  mgm0  13012  issgrpv  13047  rnglidlmmgm  14052
  Copyright terms: Public domain W3C validator