ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ismgm Unicode version

Theorem ismgm 13390
Description: The predicate "is a magma". (Contributed by FL, 2-Nov-2009.) (Revised by AV, 6-Jan-2020.)
Hypotheses
Ref Expression
ismgm.b  |-  B  =  ( Base `  M
)
ismgm.o  |-  .o.  =  ( +g  `  M )
Assertion
Ref Expression
ismgm  |-  ( M  e.  V  ->  ( M  e. Mgm  <->  A. x  e.  B  A. y  e.  B  ( x  .o.  y
)  e.  B ) )
Distinct variable groups:    x, B, y   
x, M, y    x,  .o. , y
Allowed substitution hints:    V( x, y)

Proof of Theorem ismgm
Dummy variables  b  m  o are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 basfn 13091 . . . . 5  |-  Base  Fn  _V
2 vex 2802 . . . . 5  |-  m  e. 
_V
3 funfvex 5644 . . . . . 6  |-  ( ( Fun  Base  /\  m  e.  dom  Base )  ->  ( Base `  m )  e. 
_V )
43funfni 5423 . . . . 5  |-  ( (
Base  Fn  _V  /\  m  e.  _V )  ->  ( Base `  m )  e. 
_V )
51, 2, 4mp2an 426 . . . 4  |-  ( Base `  m )  e.  _V
65a1i 9 . . 3  |-  ( m  =  M  ->  ( Base `  m )  e. 
_V )
7 fveq2 5627 . . . 4  |-  ( m  =  M  ->  ( Base `  m )  =  ( Base `  M
) )
8 ismgm.b . . . 4  |-  B  =  ( Base `  M
)
97, 8eqtr4di 2280 . . 3  |-  ( m  =  M  ->  ( Base `  m )  =  B )
10 plusgslid 13145 . . . . . . 7  |-  ( +g  = Slot  ( +g  `  ndx )  /\  ( +g  `  ndx )  e.  NN )
1110slotex 13059 . . . . . 6  |-  ( m  e.  _V  ->  ( +g  `  m )  e. 
_V )
1211elv 2803 . . . . 5  |-  ( +g  `  m )  e.  _V
1312a1i 9 . . . 4  |-  ( ( m  =  M  /\  b  =  B )  ->  ( +g  `  m
)  e.  _V )
14 fveq2 5627 . . . . . 6  |-  ( m  =  M  ->  ( +g  `  m )  =  ( +g  `  M
) )
1514adantr 276 . . . . 5  |-  ( ( m  =  M  /\  b  =  B )  ->  ( +g  `  m
)  =  ( +g  `  M ) )
16 ismgm.o . . . . 5  |-  .o.  =  ( +g  `  M )
1715, 16eqtr4di 2280 . . . 4  |-  ( ( m  =  M  /\  b  =  B )  ->  ( +g  `  m
)  =  .o.  )
18 simplr 528 . . . . 5  |-  ( ( ( m  =  M  /\  b  =  B )  /\  o  =  .o.  )  ->  b  =  B )
19 oveq 6007 . . . . . . . 8  |-  ( o  =  .o.  ->  (
x o y )  =  ( x  .o.  y ) )
2019adantl 277 . . . . . . 7  |-  ( ( ( m  =  M  /\  b  =  B )  /\  o  =  .o.  )  ->  (
x o y )  =  ( x  .o.  y ) )
2120, 18eleq12d 2300 . . . . . 6  |-  ( ( ( m  =  M  /\  b  =  B )  /\  o  =  .o.  )  ->  (
( x o y )  e.  b  <->  ( x  .o.  y )  e.  B
) )
2218, 21raleqbidv 2744 . . . . 5  |-  ( ( ( m  =  M  /\  b  =  B )  /\  o  =  .o.  )  ->  ( A. y  e.  b 
( x o y )  e.  b  <->  A. y  e.  B  ( x  .o.  y )  e.  B
) )
2318, 22raleqbidv 2744 . . . 4  |-  ( ( ( m  =  M  /\  b  =  B )  /\  o  =  .o.  )  ->  ( A. x  e.  b  A. y  e.  b 
( x o y )  e.  b  <->  A. x  e.  B  A. y  e.  B  ( x  .o.  y )  e.  B
) )
2413, 17, 23sbcied2 3066 . . 3  |-  ( ( m  =  M  /\  b  =  B )  ->  ( [. ( +g  `  m )  /  o ]. A. x  e.  b 
A. y  e.  b  ( x o y )  e.  b  <->  A. x  e.  B  A. y  e.  B  ( x  .o.  y )  e.  B
) )
256, 9, 24sbcied2 3066 . 2  |-  ( m  =  M  ->  ( [. ( Base `  m
)  /  b ]. [. ( +g  `  m
)  /  o ]. A. x  e.  b  A. y  e.  b 
( x o y )  e.  b  <->  A. x  e.  B  A. y  e.  B  ( x  .o.  y )  e.  B
) )
26 df-mgm 13389 . 2  |- Mgm  =  {
m  |  [. ( Base `  m )  / 
b ]. [. ( +g  `  m )  /  o ]. A. x  e.  b 
A. y  e.  b  ( x o y )  e.  b }
2725, 26elab2g 2950 1  |-  ( M  e.  V  ->  ( M  e. Mgm  <->  A. x  e.  B  A. y  e.  B  ( x  .o.  y
)  e.  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1395    e. wcel 2200   A.wral 2508   _Vcvv 2799   [.wsbc 3028    Fn wfn 5313   ` cfv 5318  (class class class)co 6001   Basecbs 13032   +g cplusg 13110  Mgmcmgm 13387
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-cnex 8090  ax-resscn 8091  ax-1re 8093  ax-addrcl 8096
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-sbc 3029  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-iota 5278  df-fun 5320  df-fn 5321  df-fv 5326  df-ov 6004  df-inn 9111  df-2 9169  df-ndx 13035  df-slot 13036  df-base 13038  df-plusg 13123  df-mgm 13389
This theorem is referenced by:  ismgmn0  13391  mgmcl  13392  mgm0  13402  issgrpv  13437  rnglidlmmgm  14460
  Copyright terms: Public domain W3C validator