ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ismgm Unicode version

Theorem ismgm 12781
Description: The predicate "is a magma". (Contributed by FL, 2-Nov-2009.) (Revised by AV, 6-Jan-2020.)
Hypotheses
Ref Expression
ismgm.b  |-  B  =  ( Base `  M
)
ismgm.o  |-  .o.  =  ( +g  `  M )
Assertion
Ref Expression
ismgm  |-  ( M  e.  V  ->  ( M  e. Mgm  <->  A. x  e.  B  A. y  e.  B  ( x  .o.  y
)  e.  B ) )
Distinct variable groups:    x, B, y   
x, M, y    x,  .o. , y
Allowed substitution hints:    V( x, y)

Proof of Theorem ismgm
Dummy variables  b  m  o are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 basfn 12522 . . . . 5  |-  Base  Fn  _V
2 vex 2742 . . . . 5  |-  m  e. 
_V
3 funfvex 5534 . . . . . 6  |-  ( ( Fun  Base  /\  m  e.  dom  Base )  ->  ( Base `  m )  e. 
_V )
43funfni 5318 . . . . 5  |-  ( (
Base  Fn  _V  /\  m  e.  _V )  ->  ( Base `  m )  e. 
_V )
51, 2, 4mp2an 426 . . . 4  |-  ( Base `  m )  e.  _V
65a1i 9 . . 3  |-  ( m  =  M  ->  ( Base `  m )  e. 
_V )
7 fveq2 5517 . . . 4  |-  ( m  =  M  ->  ( Base `  m )  =  ( Base `  M
) )
8 ismgm.b . . . 4  |-  B  =  ( Base `  M
)
97, 8eqtr4di 2228 . . 3  |-  ( m  =  M  ->  ( Base `  m )  =  B )
10 plusgslid 12573 . . . . . . 7  |-  ( +g  = Slot  ( +g  `  ndx )  /\  ( +g  `  ndx )  e.  NN )
1110slotex 12491 . . . . . 6  |-  ( m  e.  _V  ->  ( +g  `  m )  e. 
_V )
1211elv 2743 . . . . 5  |-  ( +g  `  m )  e.  _V
1312a1i 9 . . . 4  |-  ( ( m  =  M  /\  b  =  B )  ->  ( +g  `  m
)  e.  _V )
14 fveq2 5517 . . . . . 6  |-  ( m  =  M  ->  ( +g  `  m )  =  ( +g  `  M
) )
1514adantr 276 . . . . 5  |-  ( ( m  =  M  /\  b  =  B )  ->  ( +g  `  m
)  =  ( +g  `  M ) )
16 ismgm.o . . . . 5  |-  .o.  =  ( +g  `  M )
1715, 16eqtr4di 2228 . . . 4  |-  ( ( m  =  M  /\  b  =  B )  ->  ( +g  `  m
)  =  .o.  )
18 simplr 528 . . . . 5  |-  ( ( ( m  =  M  /\  b  =  B )  /\  o  =  .o.  )  ->  b  =  B )
19 oveq 5883 . . . . . . . 8  |-  ( o  =  .o.  ->  (
x o y )  =  ( x  .o.  y ) )
2019adantl 277 . . . . . . 7  |-  ( ( ( m  =  M  /\  b  =  B )  /\  o  =  .o.  )  ->  (
x o y )  =  ( x  .o.  y ) )
2120, 18eleq12d 2248 . . . . . 6  |-  ( ( ( m  =  M  /\  b  =  B )  /\  o  =  .o.  )  ->  (
( x o y )  e.  b  <->  ( x  .o.  y )  e.  B
) )
2218, 21raleqbidv 2685 . . . . 5  |-  ( ( ( m  =  M  /\  b  =  B )  /\  o  =  .o.  )  ->  ( A. y  e.  b 
( x o y )  e.  b  <->  A. y  e.  B  ( x  .o.  y )  e.  B
) )
2318, 22raleqbidv 2685 . . . 4  |-  ( ( ( m  =  M  /\  b  =  B )  /\  o  =  .o.  )  ->  ( A. x  e.  b  A. y  e.  b 
( x o y )  e.  b  <->  A. x  e.  B  A. y  e.  B  ( x  .o.  y )  e.  B
) )
2413, 17, 23sbcied2 3002 . . 3  |-  ( ( m  =  M  /\  b  =  B )  ->  ( [. ( +g  `  m )  /  o ]. A. x  e.  b 
A. y  e.  b  ( x o y )  e.  b  <->  A. x  e.  B  A. y  e.  B  ( x  .o.  y )  e.  B
) )
256, 9, 24sbcied2 3002 . 2  |-  ( m  =  M  ->  ( [. ( Base `  m
)  /  b ]. [. ( +g  `  m
)  /  o ]. A. x  e.  b  A. y  e.  b 
( x o y )  e.  b  <->  A. x  e.  B  A. y  e.  B  ( x  .o.  y )  e.  B
) )
26 df-mgm 12780 . 2  |- Mgm  =  {
m  |  [. ( Base `  m )  / 
b ]. [. ( +g  `  m )  /  o ]. A. x  e.  b 
A. y  e.  b  ( x o y )  e.  b }
2725, 26elab2g 2886 1  |-  ( M  e.  V  ->  ( M  e. Mgm  <->  A. x  e.  B  A. y  e.  B  ( x  .o.  y
)  e.  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1353    e. wcel 2148   A.wral 2455   _Vcvv 2739   [.wsbc 2964    Fn wfn 5213   ` cfv 5218  (class class class)co 5877   Basecbs 12464   +g cplusg 12538  Mgmcmgm 12778
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-cnex 7904  ax-resscn 7905  ax-1re 7907  ax-addrcl 7910
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2741  df-sbc 2965  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-iota 5180  df-fun 5220  df-fn 5221  df-fv 5226  df-ov 5880  df-inn 8922  df-2 8980  df-ndx 12467  df-slot 12468  df-base 12470  df-plusg 12551  df-mgm 12780
This theorem is referenced by:  ismgmn0  12782  mgmcl  12783  mgm0  12793  issgrpv  12815
  Copyright terms: Public domain W3C validator