ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ismgm Unicode version

Theorem ismgm 12640
Description: The predicate "is a magma". (Contributed by FL, 2-Nov-2009.) (Revised by AV, 6-Jan-2020.)
Hypotheses
Ref Expression
ismgm.b  |-  B  =  ( Base `  M
)
ismgm.o  |-  .o.  =  ( +g  `  M )
Assertion
Ref Expression
ismgm  |-  ( M  e.  V  ->  ( M  e. Mgm  <->  A. x  e.  B  A. y  e.  B  ( x  .o.  y
)  e.  B ) )
Distinct variable groups:    x, B, y   
x, M, y    x,  .o. , y
Allowed substitution hints:    V( x, y)

Proof of Theorem ismgm
Dummy variables  b  m  o are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 basfn 12484 . . . . 5  |-  Base  Fn  _V
2 vex 2738 . . . . 5  |-  m  e. 
_V
3 funfvex 5524 . . . . . 6  |-  ( ( Fun  Base  /\  m  e.  dom  Base )  ->  ( Base `  m )  e. 
_V )
43funfni 5308 . . . . 5  |-  ( (
Base  Fn  _V  /\  m  e.  _V )  ->  ( Base `  m )  e. 
_V )
51, 2, 4mp2an 426 . . . 4  |-  ( Base `  m )  e.  _V
65a1i 9 . . 3  |-  ( m  =  M  ->  ( Base `  m )  e. 
_V )
7 fveq2 5507 . . . 4  |-  ( m  =  M  ->  ( Base `  m )  =  ( Base `  M
) )
8 ismgm.b . . . 4  |-  B  =  ( Base `  M
)
97, 8eqtr4di 2226 . . 3  |-  ( m  =  M  ->  ( Base `  m )  =  B )
10 plusgslid 12524 . . . . . . 7  |-  ( +g  = Slot  ( +g  `  ndx )  /\  ( +g  `  ndx )  e.  NN )
1110slotex 12454 . . . . . 6  |-  ( m  e.  _V  ->  ( +g  `  m )  e. 
_V )
1211elv 2739 . . . . 5  |-  ( +g  `  m )  e.  _V
1312a1i 9 . . . 4  |-  ( ( m  =  M  /\  b  =  B )  ->  ( +g  `  m
)  e.  _V )
14 fveq2 5507 . . . . . 6  |-  ( m  =  M  ->  ( +g  `  m )  =  ( +g  `  M
) )
1514adantr 276 . . . . 5  |-  ( ( m  =  M  /\  b  =  B )  ->  ( +g  `  m
)  =  ( +g  `  M ) )
16 ismgm.o . . . . 5  |-  .o.  =  ( +g  `  M )
1715, 16eqtr4di 2226 . . . 4  |-  ( ( m  =  M  /\  b  =  B )  ->  ( +g  `  m
)  =  .o.  )
18 simplr 528 . . . . 5  |-  ( ( ( m  =  M  /\  b  =  B )  /\  o  =  .o.  )  ->  b  =  B )
19 oveq 5871 . . . . . . . 8  |-  ( o  =  .o.  ->  (
x o y )  =  ( x  .o.  y ) )
2019adantl 277 . . . . . . 7  |-  ( ( ( m  =  M  /\  b  =  B )  /\  o  =  .o.  )  ->  (
x o y )  =  ( x  .o.  y ) )
2120, 18eleq12d 2246 . . . . . 6  |-  ( ( ( m  =  M  /\  b  =  B )  /\  o  =  .o.  )  ->  (
( x o y )  e.  b  <->  ( x  .o.  y )  e.  B
) )
2218, 21raleqbidv 2682 . . . . 5  |-  ( ( ( m  =  M  /\  b  =  B )  /\  o  =  .o.  )  ->  ( A. y  e.  b 
( x o y )  e.  b  <->  A. y  e.  B  ( x  .o.  y )  e.  B
) )
2318, 22raleqbidv 2682 . . . 4  |-  ( ( ( m  =  M  /\  b  =  B )  /\  o  =  .o.  )  ->  ( A. x  e.  b  A. y  e.  b 
( x o y )  e.  b  <->  A. x  e.  B  A. y  e.  B  ( x  .o.  y )  e.  B
) )
2413, 17, 23sbcied2 2998 . . 3  |-  ( ( m  =  M  /\  b  =  B )  ->  ( [. ( +g  `  m )  /  o ]. A. x  e.  b 
A. y  e.  b  ( x o y )  e.  b  <->  A. x  e.  B  A. y  e.  B  ( x  .o.  y )  e.  B
) )
256, 9, 24sbcied2 2998 . 2  |-  ( m  =  M  ->  ( [. ( Base `  m
)  /  b ]. [. ( +g  `  m
)  /  o ]. A. x  e.  b  A. y  e.  b 
( x o y )  e.  b  <->  A. x  e.  B  A. y  e.  B  ( x  .o.  y )  e.  B
) )
26 df-mgm 12639 . 2  |- Mgm  =  {
m  |  [. ( Base `  m )  / 
b ]. [. ( +g  `  m )  /  o ]. A. x  e.  b 
A. y  e.  b  ( x o y )  e.  b }
2725, 26elab2g 2882 1  |-  ( M  e.  V  ->  ( M  e. Mgm  <->  A. x  e.  B  A. y  e.  B  ( x  .o.  y
)  e.  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1353    e. wcel 2146   A.wral 2453   _Vcvv 2735   [.wsbc 2960    Fn wfn 5203   ` cfv 5208  (class class class)co 5865   Basecbs 12427   +g cplusg 12491  Mgmcmgm 12637
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-13 2148  ax-14 2149  ax-ext 2157  ax-sep 4116  ax-pow 4169  ax-pr 4203  ax-un 4427  ax-cnex 7877  ax-resscn 7878  ax-1re 7880  ax-addrcl 7883
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ral 2458  df-rex 2459  df-v 2737  df-sbc 2961  df-un 3131  df-in 3133  df-ss 3140  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-int 3841  df-br 3999  df-opab 4060  df-mpt 4061  df-id 4287  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-rn 4631  df-res 4632  df-iota 5170  df-fun 5210  df-fn 5211  df-fv 5216  df-ov 5868  df-inn 8891  df-2 8949  df-ndx 12430  df-slot 12431  df-base 12433  df-plusg 12504  df-mgm 12639
This theorem is referenced by:  ismgmn0  12641  mgmcl  12642  mgm0  12652  issgrpv  12674
  Copyright terms: Public domain W3C validator