ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbcnel12g GIF version

Theorem sbcnel12g 3048
Description: Distribute proper substitution through negated membership. (Contributed by Andrew Salmon, 18-Jun-2011.)
Assertion
Ref Expression
sbcnel12g (𝐴𝑉 → ([𝐴 / 𝑥]𝐵𝐶𝐴 / 𝑥𝐵𝐴 / 𝑥𝐶))

Proof of Theorem sbcnel12g
StepHypRef Expression
1 df-nel 2423 . . . 4 (𝐵𝐶 ↔ ¬ 𝐵𝐶)
21sbcbii 2996 . . 3 ([𝐴 / 𝑥]𝐵𝐶[𝐴 / 𝑥] ¬ 𝐵𝐶)
32a1i 9 . 2 (𝐴𝑉 → ([𝐴 / 𝑥]𝐵𝐶[𝐴 / 𝑥] ¬ 𝐵𝐶))
4 sbcng 2977 . 2 (𝐴𝑉 → ([𝐴 / 𝑥] ¬ 𝐵𝐶 ↔ ¬ [𝐴 / 𝑥]𝐵𝐶))
5 sbcel12g 3046 . . . 4 (𝐴𝑉 → ([𝐴 / 𝑥]𝐵𝐶𝐴 / 𝑥𝐵𝐴 / 𝑥𝐶))
65notbid 657 . . 3 (𝐴𝑉 → (¬ [𝐴 / 𝑥]𝐵𝐶 ↔ ¬ 𝐴 / 𝑥𝐵𝐴 / 𝑥𝐶))
7 df-nel 2423 . . 3 (𝐴 / 𝑥𝐵𝐴 / 𝑥𝐶 ↔ ¬ 𝐴 / 𝑥𝐵𝐴 / 𝑥𝐶)
86, 7bitr4di 197 . 2 (𝐴𝑉 → (¬ [𝐴 / 𝑥]𝐵𝐶𝐴 / 𝑥𝐵𝐴 / 𝑥𝐶))
93, 4, 83bitrd 213 1 (𝐴𝑉 → ([𝐴 / 𝑥]𝐵𝐶𝐴 / 𝑥𝐵𝐴 / 𝑥𝐶))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wb 104  wcel 2128  wnel 2422  [wsbc 2937  csb 3031
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2139
This theorem depends on definitions:  df-bi 116  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-nel 2423  df-v 2714  df-sbc 2938  df-csb 3032
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator