ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbcnel12g GIF version

Theorem sbcnel12g 2946
Description: Distribute proper substitution through negated membership. (Contributed by Andrew Salmon, 18-Jun-2011.)
Assertion
Ref Expression
sbcnel12g (𝐴𝑉 → ([𝐴 / 𝑥]𝐵𝐶𝐴 / 𝑥𝐵𝐴 / 𝑥𝐶))

Proof of Theorem sbcnel12g
StepHypRef Expression
1 df-nel 2351 . . . 4 (𝐵𝐶 ↔ ¬ 𝐵𝐶)
21sbcbii 2896 . . 3 ([𝐴 / 𝑥]𝐵𝐶[𝐴 / 𝑥] ¬ 𝐵𝐶)
32a1i 9 . 2 (𝐴𝑉 → ([𝐴 / 𝑥]𝐵𝐶[𝐴 / 𝑥] ¬ 𝐵𝐶))
4 sbcng 2877 . 2 (𝐴𝑉 → ([𝐴 / 𝑥] ¬ 𝐵𝐶 ↔ ¬ [𝐴 / 𝑥]𝐵𝐶))
5 sbcel12g 2944 . . . 4 (𝐴𝑉 → ([𝐴 / 𝑥]𝐵𝐶𝐴 / 𝑥𝐵𝐴 / 𝑥𝐶))
65notbid 627 . . 3 (𝐴𝑉 → (¬ [𝐴 / 𝑥]𝐵𝐶 ↔ ¬ 𝐴 / 𝑥𝐵𝐴 / 𝑥𝐶))
7 df-nel 2351 . . 3 (𝐴 / 𝑥𝐵𝐴 / 𝑥𝐶 ↔ ¬ 𝐴 / 𝑥𝐵𝐴 / 𝑥𝐶)
86, 7syl6bbr 196 . 2 (𝐴𝑉 → (¬ [𝐴 / 𝑥]𝐵𝐶𝐴 / 𝑥𝐵𝐴 / 𝑥𝐶))
93, 4, 83bitrd 212 1 (𝐴𝑉 → ([𝐴 / 𝑥]𝐵𝐶𝐴 / 𝑥𝐵𝐴 / 𝑥𝐶))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wb 103  wcel 1438  wnel 2350  [wsbc 2838  csb 2931
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070
This theorem depends on definitions:  df-bi 115  df-tru 1292  df-fal 1295  df-nf 1395  df-sb 1693  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-nel 2351  df-v 2621  df-sbc 2839  df-csb 2932
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator