| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sbcnel12g | GIF version | ||
| Description: Distribute proper substitution through negated membership. (Contributed by Andrew Salmon, 18-Jun-2011.) |
| Ref | Expression |
|---|---|
| sbcnel12g | ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝐵 ∉ 𝐶 ↔ ⦋𝐴 / 𝑥⦌𝐵 ∉ ⦋𝐴 / 𝑥⦌𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-nel 2496 | . . . 4 ⊢ (𝐵 ∉ 𝐶 ↔ ¬ 𝐵 ∈ 𝐶) | |
| 2 | 1 | sbcbii 3088 | . . 3 ⊢ ([𝐴 / 𝑥]𝐵 ∉ 𝐶 ↔ [𝐴 / 𝑥] ¬ 𝐵 ∈ 𝐶) |
| 3 | 2 | a1i 9 | . 2 ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝐵 ∉ 𝐶 ↔ [𝐴 / 𝑥] ¬ 𝐵 ∈ 𝐶)) |
| 4 | sbcng 3069 | . 2 ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥] ¬ 𝐵 ∈ 𝐶 ↔ ¬ [𝐴 / 𝑥]𝐵 ∈ 𝐶)) | |
| 5 | sbcel12g 3139 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝐵 ∈ 𝐶 ↔ ⦋𝐴 / 𝑥⦌𝐵 ∈ ⦋𝐴 / 𝑥⦌𝐶)) | |
| 6 | 5 | notbid 671 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (¬ [𝐴 / 𝑥]𝐵 ∈ 𝐶 ↔ ¬ ⦋𝐴 / 𝑥⦌𝐵 ∈ ⦋𝐴 / 𝑥⦌𝐶)) |
| 7 | df-nel 2496 | . . 3 ⊢ (⦋𝐴 / 𝑥⦌𝐵 ∉ ⦋𝐴 / 𝑥⦌𝐶 ↔ ¬ ⦋𝐴 / 𝑥⦌𝐵 ∈ ⦋𝐴 / 𝑥⦌𝐶) | |
| 8 | 6, 7 | bitr4di 198 | . 2 ⊢ (𝐴 ∈ 𝑉 → (¬ [𝐴 / 𝑥]𝐵 ∈ 𝐶 ↔ ⦋𝐴 / 𝑥⦌𝐵 ∉ ⦋𝐴 / 𝑥⦌𝐶)) |
| 9 | 3, 4, 8 | 3bitrd 214 | 1 ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝐵 ∉ 𝐶 ↔ ⦋𝐴 / 𝑥⦌𝐵 ∉ ⦋𝐴 / 𝑥⦌𝐶)) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 105 ∈ wcel 2200 ∉ wnel 2495 [wsbc 3028 ⦋csb 3124 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-nel 2496 df-v 2801 df-sbc 3029 df-csb 3125 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |