ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbcnel12g GIF version

Theorem sbcnel12g 3066
Description: Distribute proper substitution through negated membership. (Contributed by Andrew Salmon, 18-Jun-2011.)
Assertion
Ref Expression
sbcnel12g (𝐴𝑉 → ([𝐴 / 𝑥]𝐵𝐶𝐴 / 𝑥𝐵𝐴 / 𝑥𝐶))

Proof of Theorem sbcnel12g
StepHypRef Expression
1 df-nel 2436 . . . 4 (𝐵𝐶 ↔ ¬ 𝐵𝐶)
21sbcbii 3014 . . 3 ([𝐴 / 𝑥]𝐵𝐶[𝐴 / 𝑥] ¬ 𝐵𝐶)
32a1i 9 . 2 (𝐴𝑉 → ([𝐴 / 𝑥]𝐵𝐶[𝐴 / 𝑥] ¬ 𝐵𝐶))
4 sbcng 2995 . 2 (𝐴𝑉 → ([𝐴 / 𝑥] ¬ 𝐵𝐶 ↔ ¬ [𝐴 / 𝑥]𝐵𝐶))
5 sbcel12g 3064 . . . 4 (𝐴𝑉 → ([𝐴 / 𝑥]𝐵𝐶𝐴 / 𝑥𝐵𝐴 / 𝑥𝐶))
65notbid 662 . . 3 (𝐴𝑉 → (¬ [𝐴 / 𝑥]𝐵𝐶 ↔ ¬ 𝐴 / 𝑥𝐵𝐴 / 𝑥𝐶))
7 df-nel 2436 . . 3 (𝐴 / 𝑥𝐵𝐴 / 𝑥𝐶 ↔ ¬ 𝐴 / 𝑥𝐵𝐴 / 𝑥𝐶)
86, 7bitr4di 197 . 2 (𝐴𝑉 → (¬ [𝐴 / 𝑥]𝐵𝐶𝐴 / 𝑥𝐵𝐴 / 𝑥𝐶))
93, 4, 83bitrd 213 1 (𝐴𝑉 → ([𝐴 / 𝑥]𝐵𝐶𝐴 / 𝑥𝐵𝐴 / 𝑥𝐶))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wb 104  wcel 2141  wnel 2435  [wsbc 2955  csb 3049
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-nel 2436  df-v 2732  df-sbc 2956  df-csb 3050
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator