| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sbcralg | GIF version | ||
| Description: Interchange class substitution and restricted quantifier. (Contributed by NM, 15-Nov-2005.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) |
| Ref | Expression |
|---|---|
| sbcralg | ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]∀𝑦 ∈ 𝐵 𝜑 ↔ ∀𝑦 ∈ 𝐵 [𝐴 / 𝑥]𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfsbcq2 3005 | . 2 ⊢ (𝑧 = 𝐴 → ([𝑧 / 𝑥]∀𝑦 ∈ 𝐵 𝜑 ↔ [𝐴 / 𝑥]∀𝑦 ∈ 𝐵 𝜑)) | |
| 2 | dfsbcq2 3005 | . . 3 ⊢ (𝑧 = 𝐴 → ([𝑧 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜑)) | |
| 3 | 2 | ralbidv 2507 | . 2 ⊢ (𝑧 = 𝐴 → (∀𝑦 ∈ 𝐵 [𝑧 / 𝑥]𝜑 ↔ ∀𝑦 ∈ 𝐵 [𝐴 / 𝑥]𝜑)) |
| 4 | nfcv 2349 | . . . 4 ⊢ Ⅎ𝑥𝐵 | |
| 5 | nfs1v 1968 | . . . 4 ⊢ Ⅎ𝑥[𝑧 / 𝑥]𝜑 | |
| 6 | 4, 5 | nfralxy 2545 | . . 3 ⊢ Ⅎ𝑥∀𝑦 ∈ 𝐵 [𝑧 / 𝑥]𝜑 |
| 7 | sbequ12 1795 | . . . 4 ⊢ (𝑥 = 𝑧 → (𝜑 ↔ [𝑧 / 𝑥]𝜑)) | |
| 8 | 7 | ralbidv 2507 | . . 3 ⊢ (𝑥 = 𝑧 → (∀𝑦 ∈ 𝐵 𝜑 ↔ ∀𝑦 ∈ 𝐵 [𝑧 / 𝑥]𝜑)) |
| 9 | 6, 8 | sbie 1815 | . 2 ⊢ ([𝑧 / 𝑥]∀𝑦 ∈ 𝐵 𝜑 ↔ ∀𝑦 ∈ 𝐵 [𝑧 / 𝑥]𝜑) |
| 10 | 1, 3, 9 | vtoclbg 2836 | 1 ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]∀𝑦 ∈ 𝐵 𝜑 ↔ ∀𝑦 ∈ 𝐵 [𝐴 / 𝑥]𝜑)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1373 [wsb 1786 ∈ wcel 2177 ∀wral 2485 [wsbc 3002 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-v 2775 df-sbc 3003 |
| This theorem is referenced by: r19.12sn 3703 |
| Copyright terms: Public domain | W3C validator |