ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbcrel GIF version

Theorem sbcrel 4583
Description: Distribute proper substitution through a relation predicate. (Contributed by Alexander van der Vekens, 23-Jul-2017.)
Assertion
Ref Expression
sbcrel (𝐴𝑉 → ([𝐴 / 𝑥]Rel 𝑅 ↔ Rel 𝐴 / 𝑥𝑅))

Proof of Theorem sbcrel
StepHypRef Expression
1 sbcssg 3436 . . 3 (𝐴𝑉 → ([𝐴 / 𝑥]𝑅 ⊆ (V × V) ↔ 𝐴 / 𝑥𝑅𝐴 / 𝑥(V × V)))
2 csbconstg 2981 . . . 4 (𝐴𝑉𝐴 / 𝑥(V × V) = (V × V))
32sseq2d 3091 . . 3 (𝐴𝑉 → (𝐴 / 𝑥𝑅𝐴 / 𝑥(V × V) ↔ 𝐴 / 𝑥𝑅 ⊆ (V × V)))
41, 3bitrd 187 . 2 (𝐴𝑉 → ([𝐴 / 𝑥]𝑅 ⊆ (V × V) ↔ 𝐴 / 𝑥𝑅 ⊆ (V × V)))
5 df-rel 4504 . . 3 (Rel 𝑅𝑅 ⊆ (V × V))
65sbcbii 2934 . 2 ([𝐴 / 𝑥]Rel 𝑅[𝐴 / 𝑥]𝑅 ⊆ (V × V))
7 df-rel 4504 . 2 (Rel 𝐴 / 𝑥𝑅𝐴 / 𝑥𝑅 ⊆ (V × V))
84, 6, 73bitr4g 222 1 (𝐴𝑉 → ([𝐴 / 𝑥]Rel 𝑅 ↔ Rel 𝐴 / 𝑥𝑅))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104  wcel 1461  Vcvv 2655  [wsbc 2876  csb 2969  wss 3035   × cxp 4495  Rel wrel 4502
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 681  ax-5 1404  ax-7 1405  ax-gen 1406  ax-ie1 1450  ax-ie2 1451  ax-8 1463  ax-10 1464  ax-11 1465  ax-i12 1466  ax-bndl 1467  ax-4 1468  ax-17 1487  ax-i9 1491  ax-ial 1495  ax-i5r 1496  ax-ext 2095
This theorem depends on definitions:  df-bi 116  df-tru 1315  df-nf 1418  df-sb 1717  df-clab 2100  df-cleq 2106  df-clel 2109  df-nfc 2242  df-v 2657  df-sbc 2877  df-csb 2970  df-in 3041  df-ss 3048  df-rel 4504
This theorem is referenced by:  sbcfung  5103
  Copyright terms: Public domain W3C validator