| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sbcrel | GIF version | ||
| Description: Distribute proper substitution through a relation predicate. (Contributed by Alexander van der Vekens, 23-Jul-2017.) |
| Ref | Expression |
|---|---|
| sbcrel | ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]Rel 𝑅 ↔ Rel ⦋𝐴 / 𝑥⦌𝑅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbcssg 3559 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝑅 ⊆ (V × V) ↔ ⦋𝐴 / 𝑥⦌𝑅 ⊆ ⦋𝐴 / 𝑥⦌(V × V))) | |
| 2 | csbconstg 3098 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌(V × V) = (V × V)) | |
| 3 | 2 | sseq2d 3213 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (⦋𝐴 / 𝑥⦌𝑅 ⊆ ⦋𝐴 / 𝑥⦌(V × V) ↔ ⦋𝐴 / 𝑥⦌𝑅 ⊆ (V × V))) |
| 4 | 1, 3 | bitrd 188 | . 2 ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝑅 ⊆ (V × V) ↔ ⦋𝐴 / 𝑥⦌𝑅 ⊆ (V × V))) |
| 5 | df-rel 4670 | . . 3 ⊢ (Rel 𝑅 ↔ 𝑅 ⊆ (V × V)) | |
| 6 | 5 | sbcbii 3049 | . 2 ⊢ ([𝐴 / 𝑥]Rel 𝑅 ↔ [𝐴 / 𝑥]𝑅 ⊆ (V × V)) |
| 7 | df-rel 4670 | . 2 ⊢ (Rel ⦋𝐴 / 𝑥⦌𝑅 ↔ ⦋𝐴 / 𝑥⦌𝑅 ⊆ (V × V)) | |
| 8 | 4, 6, 7 | 3bitr4g 223 | 1 ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]Rel 𝑅 ↔ Rel ⦋𝐴 / 𝑥⦌𝑅)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∈ wcel 2167 Vcvv 2763 [wsbc 2989 ⦋csb 3084 ⊆ wss 3157 × cxp 4661 Rel wrel 4668 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-sbc 2990 df-csb 3085 df-in 3163 df-ss 3170 df-rel 4670 |
| This theorem is referenced by: sbcfung 5282 |
| Copyright terms: Public domain | W3C validator |