| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sseq2d | Unicode version | ||
| Description: An equality deduction for the subclass relationship. (Contributed by NM, 14-Aug-1994.) |
| Ref | Expression |
|---|---|
| sseq1d.1 |
|
| Ref | Expression |
|---|---|
| sseq2d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseq1d.1 |
. 2
| |
| 2 | sseq2 3216 |
. 2
| |
| 3 | 1, 2 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-11 1528 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-in 3171 df-ss 3178 |
| This theorem is referenced by: sseq12d 3223 sseqtrd 3230 exmidsssn 4245 exmidsssnc 4246 onsucsssucexmid 4574 sbcrel 4760 funimass2 5351 fnco 5383 fnssresb 5387 fnimaeq0 5396 foimacnv 5539 fvelimab 5634 ssimaexg 5640 fvmptss2 5653 rdgss 6468 tapeq2 7364 summodclem2 11664 summodc 11665 zsumdc 11666 fsum3cvg3 11678 prodmodclem2 11859 prodmodc 11860 zproddc 11861 ennnfoneleminc 12753 tgval 13065 prdsval 13076 releqgg 13527 eqgex 13528 eqgfval 13529 opprsubgg 13817 unitsubm 13852 subrngpropd 13949 subrgsubm 13967 issubrg3 13980 subrgpropd 13986 lsslss 14114 lsspropdg 14164 islidlm 14212 rspcl 14224 rspssid 14225 isbasisg 14487 tgss3 14521 restbasg 14611 tgrest 14612 restopn2 14626 cnpnei 14662 cnptopresti 14681 txbas 14701 elmopn 14889 neibl 14934 dvfgg 15131 |
| Copyright terms: Public domain | W3C validator |