ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sseq2d Unicode version

Theorem sseq2d 3177
Description: An equality deduction for the subclass relationship. (Contributed by NM, 14-Aug-1994.)
Hypothesis
Ref Expression
sseq1d.1  |-  ( ph  ->  A  =  B )
Assertion
Ref Expression
sseq2d  |-  ( ph  ->  ( C  C_  A  <->  C 
C_  B ) )

Proof of Theorem sseq2d
StepHypRef Expression
1 sseq1d.1 . 2  |-  ( ph  ->  A  =  B )
2 sseq2 3171 . 2  |-  ( A  =  B  ->  ( C  C_  A  <->  C  C_  B
) )
31, 2syl 14 1  |-  ( ph  ->  ( C  C_  A  <->  C 
C_  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104    = wceq 1348    C_ wss 3121
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-11 1499  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-in 3127  df-ss 3134
This theorem is referenced by:  sseq12d  3178  sseqtrd  3185  exmidsssn  4186  exmidsssnc  4187  onsucsssucexmid  4509  sbcrel  4695  funimass2  5274  fnco  5304  fnssresb  5308  fnimaeq0  5317  foimacnv  5458  fvelimab  5550  ssimaexg  5556  fvmptss2  5569  rdgss  6359  summodclem2  11332  summodc  11333  zsumdc  11334  fsum3cvg3  11346  prodmodclem2  11527  prodmodc  11528  zproddc  11529  ennnfoneleminc  12353  isbasisg  12757  tgval  12764  tgss3  12793  restbasg  12883  tgrest  12884  restopn2  12898  cnpnei  12934  cnptopresti  12953  txbas  12973  elmopn  13161  neibl  13206  dvfgg  13372
  Copyright terms: Public domain W3C validator