ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sseq2d Unicode version

Theorem sseq2d 3177
Description: An equality deduction for the subclass relationship. (Contributed by NM, 14-Aug-1994.)
Hypothesis
Ref Expression
sseq1d.1  |-  ( ph  ->  A  =  B )
Assertion
Ref Expression
sseq2d  |-  ( ph  ->  ( C  C_  A  <->  C 
C_  B ) )

Proof of Theorem sseq2d
StepHypRef Expression
1 sseq1d.1 . 2  |-  ( ph  ->  A  =  B )
2 sseq2 3171 . 2  |-  ( A  =  B  ->  ( C  C_  A  <->  C  C_  B
) )
31, 2syl 14 1  |-  ( ph  ->  ( C  C_  A  <->  C 
C_  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104    = wceq 1348    C_ wss 3121
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-11 1499  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-in 3127  df-ss 3134
This theorem is referenced by:  sseq12d  3178  sseqtrd  3185  exmidsssn  4188  exmidsssnc  4189  onsucsssucexmid  4511  sbcrel  4697  funimass2  5276  fnco  5306  fnssresb  5310  fnimaeq0  5319  foimacnv  5460  fvelimab  5552  ssimaexg  5558  fvmptss2  5571  rdgss  6362  summodclem2  11345  summodc  11346  zsumdc  11347  fsum3cvg3  11359  prodmodclem2  11540  prodmodc  11541  zproddc  11542  ennnfoneleminc  12366  isbasisg  12836  tgval  12843  tgss3  12872  restbasg  12962  tgrest  12963  restopn2  12977  cnpnei  13013  cnptopresti  13032  txbas  13052  elmopn  13240  neibl  13285  dvfgg  13451
  Copyright terms: Public domain W3C validator