| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sseq2d | Unicode version | ||
| Description: An equality deduction for the subclass relationship. (Contributed by NM, 14-Aug-1994.) |
| Ref | Expression |
|---|---|
| sseq1d.1 |
|
| Ref | Expression |
|---|---|
| sseq2d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseq1d.1 |
. 2
| |
| 2 | sseq2 3248 |
. 2
| |
| 3 | 1, 2 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-11 1552 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-in 3203 df-ss 3210 |
| This theorem is referenced by: sseq12d 3255 sseqtrd 3262 exmidsssn 4285 exmidsssnc 4286 onsucsssucexmid 4618 sbcrel 4804 funimass2 5398 fnco 5430 fnssresb 5434 fnimaeq0 5444 foimacnv 5589 fvelimab 5689 ssimaexg 5695 fvmptss2 5708 rdgss 6527 tapeq2 7435 fzowrddc 11174 swrdnd 11186 swrd0g 11187 summodclem2 11888 summodc 11889 zsumdc 11890 fsum3cvg3 11902 prodmodclem2 12083 prodmodc 12084 zproddc 12085 ennnfoneleminc 12977 tgval 13290 prdsval 13301 releqgg 13752 eqgex 13753 eqgfval 13754 opprsubgg 14042 unitsubm 14077 subrngpropd 14174 subrgsubm 14192 issubrg3 14205 subrgpropd 14211 lsslss 14339 lsspropdg 14389 islidlm 14437 rspcl 14449 rspssid 14450 isbasisg 14712 tgss3 14746 restbasg 14836 tgrest 14837 restopn2 14851 cnpnei 14887 cnptopresti 14906 txbas 14926 elmopn 15114 neibl 15159 dvfgg 15356 incistruhgr 15884 edgssv2en 15991 wksfval 16028 |
| Copyright terms: Public domain | W3C validator |