Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sseq2d | Unicode version |
Description: An equality deduction for the subclass relationship. (Contributed by NM, 14-Aug-1994.) |
Ref | Expression |
---|---|
sseq1d.1 |
Ref | Expression |
---|---|
sseq2d |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sseq1d.1 | . 2 | |
2 | sseq2 3171 | . 2 | |
3 | 1, 2 | syl 14 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 104 wceq 1348 wss 3121 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-11 1499 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-in 3127 df-ss 3134 |
This theorem is referenced by: sseq12d 3178 sseqtrd 3185 exmidsssn 4188 exmidsssnc 4189 onsucsssucexmid 4511 sbcrel 4697 funimass2 5276 fnco 5306 fnssresb 5310 fnimaeq0 5319 foimacnv 5460 fvelimab 5552 ssimaexg 5558 fvmptss2 5571 rdgss 6362 summodclem2 11345 summodc 11346 zsumdc 11347 fsum3cvg3 11359 prodmodclem2 11540 prodmodc 11541 zproddc 11542 ennnfoneleminc 12366 isbasisg 12836 tgval 12843 tgss3 12872 restbasg 12962 tgrest 12963 restopn2 12977 cnpnei 13013 cnptopresti 13032 txbas 13052 elmopn 13240 neibl 13285 dvfgg 13451 |
Copyright terms: Public domain | W3C validator |