| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sseq2d | Unicode version | ||
| Description: An equality deduction for the subclass relationship. (Contributed by NM, 14-Aug-1994.) |
| Ref | Expression |
|---|---|
| sseq1d.1 |
|
| Ref | Expression |
|---|---|
| sseq2d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseq1d.1 |
. 2
| |
| 2 | sseq2 3225 |
. 2
| |
| 3 | 1, 2 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-11 1530 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-in 3180 df-ss 3187 |
| This theorem is referenced by: sseq12d 3232 sseqtrd 3239 exmidsssn 4262 exmidsssnc 4263 onsucsssucexmid 4593 sbcrel 4779 funimass2 5371 fnco 5403 fnssresb 5407 fnimaeq0 5417 foimacnv 5562 fvelimab 5658 ssimaexg 5664 fvmptss2 5677 rdgss 6492 tapeq2 7400 fzowrddc 11138 swrdnd 11150 swrd0g 11151 summodclem2 11808 summodc 11809 zsumdc 11810 fsum3cvg3 11822 prodmodclem2 12003 prodmodc 12004 zproddc 12005 ennnfoneleminc 12897 tgval 13209 prdsval 13220 releqgg 13671 eqgex 13672 eqgfval 13673 opprsubgg 13961 unitsubm 13996 subrngpropd 14093 subrgsubm 14111 issubrg3 14124 subrgpropd 14130 lsslss 14258 lsspropdg 14308 islidlm 14356 rspcl 14368 rspssid 14369 isbasisg 14631 tgss3 14665 restbasg 14755 tgrest 14756 restopn2 14770 cnpnei 14806 cnptopresti 14825 txbas 14845 elmopn 15033 neibl 15078 dvfgg 15275 incistruhgr 15801 |
| Copyright terms: Public domain | W3C validator |