![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sseq2d | Unicode version |
Description: An equality deduction for the subclass relationship. (Contributed by NM, 14-Aug-1994.) |
Ref | Expression |
---|---|
sseq1d.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
sseq2d |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sseq1d.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | sseq2 3204 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | syl 14 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-11 1517 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-in 3160 df-ss 3167 |
This theorem is referenced by: sseq12d 3211 sseqtrd 3218 exmidsssn 4232 exmidsssnc 4233 onsucsssucexmid 4560 sbcrel 4746 funimass2 5333 fnco 5363 fnssresb 5367 fnimaeq0 5376 foimacnv 5519 fvelimab 5614 ssimaexg 5620 fvmptss2 5633 rdgss 6438 tapeq2 7315 summodclem2 11528 summodc 11529 zsumdc 11530 fsum3cvg3 11542 prodmodclem2 11723 prodmodc 11724 zproddc 11725 ennnfoneleminc 12571 tgval 12876 releqgg 13293 eqgex 13294 eqgfval 13295 opprsubgg 13583 unitsubm 13618 subrngpropd 13715 subrgsubm 13733 issubrg3 13746 subrgpropd 13752 lsslss 13880 lsspropdg 13930 islidlm 13978 rspcl 13990 rspssid 13991 isbasisg 14223 tgss3 14257 restbasg 14347 tgrest 14348 restopn2 14362 cnpnei 14398 cnptopresti 14417 txbas 14437 elmopn 14625 neibl 14670 dvfgg 14867 |
Copyright terms: Public domain | W3C validator |