Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sseq2d | Unicode version |
Description: An equality deduction for the subclass relationship. (Contributed by NM, 14-Aug-1994.) |
Ref | Expression |
---|---|
sseq1d.1 |
Ref | Expression |
---|---|
sseq2d |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sseq1d.1 | . 2 | |
2 | sseq2 3171 | . 2 | |
3 | 1, 2 | syl 14 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 104 wceq 1348 wss 3121 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-11 1499 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-in 3127 df-ss 3134 |
This theorem is referenced by: sseq12d 3178 sseqtrd 3185 exmidsssn 4186 exmidsssnc 4187 onsucsssucexmid 4509 sbcrel 4695 funimass2 5274 fnco 5304 fnssresb 5308 fnimaeq0 5317 foimacnv 5458 fvelimab 5550 ssimaexg 5556 fvmptss2 5569 rdgss 6359 summodclem2 11332 summodc 11333 zsumdc 11334 fsum3cvg3 11346 prodmodclem2 11527 prodmodc 11528 zproddc 11529 ennnfoneleminc 12353 isbasisg 12757 tgval 12764 tgss3 12793 restbasg 12883 tgrest 12884 restopn2 12898 cnpnei 12934 cnptopresti 12953 txbas 12973 elmopn 13161 neibl 13206 dvfgg 13372 |
Copyright terms: Public domain | W3C validator |