ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sseq2d Unicode version

Theorem sseq2d 3172
Description: An equality deduction for the subclass relationship. (Contributed by NM, 14-Aug-1994.)
Hypothesis
Ref Expression
sseq1d.1  |-  ( ph  ->  A  =  B )
Assertion
Ref Expression
sseq2d  |-  ( ph  ->  ( C  C_  A  <->  C 
C_  B ) )

Proof of Theorem sseq2d
StepHypRef Expression
1 sseq1d.1 . 2  |-  ( ph  ->  A  =  B )
2 sseq2 3166 . 2  |-  ( A  =  B  ->  ( C  C_  A  <->  C  C_  B
) )
31, 2syl 14 1  |-  ( ph  ->  ( C  C_  A  <->  C 
C_  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104    = wceq 1343    C_ wss 3116
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-11 1494  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-in 3122  df-ss 3129
This theorem is referenced by:  sseq12d  3173  sseqtrd  3180  exmidsssn  4181  exmidsssnc  4182  onsucsssucexmid  4504  sbcrel  4690  funimass2  5266  fnco  5296  fnssresb  5300  fnimaeq0  5309  foimacnv  5450  fvelimab  5542  ssimaexg  5548  fvmptss2  5561  rdgss  6351  summodclem2  11323  summodc  11324  zsumdc  11325  fsum3cvg3  11337  prodmodclem2  11518  prodmodc  11519  zproddc  11520  ennnfoneleminc  12344  isbasisg  12682  tgval  12689  tgss3  12718  restbasg  12808  tgrest  12809  restopn2  12823  cnpnei  12859  cnptopresti  12878  txbas  12898  elmopn  13086  neibl  13131  dvfgg  13297
  Copyright terms: Public domain W3C validator