| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sseq2d | Unicode version | ||
| Description: An equality deduction for the subclass relationship. (Contributed by NM, 14-Aug-1994.) |
| Ref | Expression |
|---|---|
| sseq1d.1 |
|
| Ref | Expression |
|---|---|
| sseq2d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseq1d.1 |
. 2
| |
| 2 | sseq2 3217 |
. 2
| |
| 3 | 1, 2 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-11 1529 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-in 3172 df-ss 3179 |
| This theorem is referenced by: sseq12d 3224 sseqtrd 3231 exmidsssn 4246 exmidsssnc 4247 onsucsssucexmid 4575 sbcrel 4761 funimass2 5352 fnco 5384 fnssresb 5388 fnimaeq0 5397 foimacnv 5540 fvelimab 5635 ssimaexg 5641 fvmptss2 5654 rdgss 6469 tapeq2 7365 fzowrddc 11100 swrdnd 11112 swrd0g 11113 summodclem2 11693 summodc 11694 zsumdc 11695 fsum3cvg3 11707 prodmodclem2 11888 prodmodc 11889 zproddc 11890 ennnfoneleminc 12782 tgval 13094 prdsval 13105 releqgg 13556 eqgex 13557 eqgfval 13558 opprsubgg 13846 unitsubm 13881 subrngpropd 13978 subrgsubm 13996 issubrg3 14009 subrgpropd 14015 lsslss 14143 lsspropdg 14193 islidlm 14241 rspcl 14253 rspssid 14254 isbasisg 14516 tgss3 14550 restbasg 14640 tgrest 14641 restopn2 14655 cnpnei 14691 cnptopresti 14710 txbas 14730 elmopn 14918 neibl 14963 dvfgg 15160 |
| Copyright terms: Public domain | W3C validator |