| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sess2 | GIF version | ||
| Description: Subset theorem for the set-like predicate. (Contributed by Mario Carneiro, 24-Jun-2015.) |
| Ref | Expression |
|---|---|
| sess2 | ⊢ (𝐴 ⊆ 𝐵 → (𝑅 Se 𝐵 → 𝑅 Se 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssralv 3247 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (∀𝑥 ∈ 𝐵 {𝑦 ∈ 𝐵 ∣ 𝑦𝑅𝑥} ∈ V → ∀𝑥 ∈ 𝐴 {𝑦 ∈ 𝐵 ∣ 𝑦𝑅𝑥} ∈ V)) | |
| 2 | rabss2 3266 | . . . . 5 ⊢ (𝐴 ⊆ 𝐵 → {𝑦 ∈ 𝐴 ∣ 𝑦𝑅𝑥} ⊆ {𝑦 ∈ 𝐵 ∣ 𝑦𝑅𝑥}) | |
| 3 | ssexg 4172 | . . . . . 6 ⊢ (({𝑦 ∈ 𝐴 ∣ 𝑦𝑅𝑥} ⊆ {𝑦 ∈ 𝐵 ∣ 𝑦𝑅𝑥} ∧ {𝑦 ∈ 𝐵 ∣ 𝑦𝑅𝑥} ∈ V) → {𝑦 ∈ 𝐴 ∣ 𝑦𝑅𝑥} ∈ V) | |
| 4 | 3 | ex 115 | . . . . 5 ⊢ ({𝑦 ∈ 𝐴 ∣ 𝑦𝑅𝑥} ⊆ {𝑦 ∈ 𝐵 ∣ 𝑦𝑅𝑥} → ({𝑦 ∈ 𝐵 ∣ 𝑦𝑅𝑥} ∈ V → {𝑦 ∈ 𝐴 ∣ 𝑦𝑅𝑥} ∈ V)) |
| 5 | 2, 4 | syl 14 | . . . 4 ⊢ (𝐴 ⊆ 𝐵 → ({𝑦 ∈ 𝐵 ∣ 𝑦𝑅𝑥} ∈ V → {𝑦 ∈ 𝐴 ∣ 𝑦𝑅𝑥} ∈ V)) |
| 6 | 5 | ralimdv 2565 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (∀𝑥 ∈ 𝐴 {𝑦 ∈ 𝐵 ∣ 𝑦𝑅𝑥} ∈ V → ∀𝑥 ∈ 𝐴 {𝑦 ∈ 𝐴 ∣ 𝑦𝑅𝑥} ∈ V)) |
| 7 | 1, 6 | syld 45 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (∀𝑥 ∈ 𝐵 {𝑦 ∈ 𝐵 ∣ 𝑦𝑅𝑥} ∈ V → ∀𝑥 ∈ 𝐴 {𝑦 ∈ 𝐴 ∣ 𝑦𝑅𝑥} ∈ V)) |
| 8 | df-se 4368 | . 2 ⊢ (𝑅 Se 𝐵 ↔ ∀𝑥 ∈ 𝐵 {𝑦 ∈ 𝐵 ∣ 𝑦𝑅𝑥} ∈ V) | |
| 9 | df-se 4368 | . 2 ⊢ (𝑅 Se 𝐴 ↔ ∀𝑥 ∈ 𝐴 {𝑦 ∈ 𝐴 ∣ 𝑦𝑅𝑥} ∈ V) | |
| 10 | 7, 8, 9 | 3imtr4g 205 | 1 ⊢ (𝐴 ⊆ 𝐵 → (𝑅 Se 𝐵 → 𝑅 Se 𝐴)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2167 ∀wral 2475 {crab 2479 Vcvv 2763 ⊆ wss 3157 class class class wbr 4033 Se wse 4364 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-sep 4151 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rab 2484 df-v 2765 df-in 3163 df-ss 3170 df-se 4368 |
| This theorem is referenced by: seeq2 4375 |
| Copyright terms: Public domain | W3C validator |