ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sess2 GIF version

Theorem sess2 4323
Description: Subset theorem for the set-like predicate. (Contributed by Mario Carneiro, 24-Jun-2015.)
Assertion
Ref Expression
sess2 (𝐴𝐵 → (𝑅 Se 𝐵𝑅 Se 𝐴))

Proof of Theorem sess2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssralv 3211 . . 3 (𝐴𝐵 → (∀𝑥𝐵 {𝑦𝐵𝑦𝑅𝑥} ∈ V → ∀𝑥𝐴 {𝑦𝐵𝑦𝑅𝑥} ∈ V))
2 rabss2 3230 . . . . 5 (𝐴𝐵 → {𝑦𝐴𝑦𝑅𝑥} ⊆ {𝑦𝐵𝑦𝑅𝑥})
3 ssexg 4128 . . . . . 6 (({𝑦𝐴𝑦𝑅𝑥} ⊆ {𝑦𝐵𝑦𝑅𝑥} ∧ {𝑦𝐵𝑦𝑅𝑥} ∈ V) → {𝑦𝐴𝑦𝑅𝑥} ∈ V)
43ex 114 . . . . 5 ({𝑦𝐴𝑦𝑅𝑥} ⊆ {𝑦𝐵𝑦𝑅𝑥} → ({𝑦𝐵𝑦𝑅𝑥} ∈ V → {𝑦𝐴𝑦𝑅𝑥} ∈ V))
52, 4syl 14 . . . 4 (𝐴𝐵 → ({𝑦𝐵𝑦𝑅𝑥} ∈ V → {𝑦𝐴𝑦𝑅𝑥} ∈ V))
65ralimdv 2538 . . 3 (𝐴𝐵 → (∀𝑥𝐴 {𝑦𝐵𝑦𝑅𝑥} ∈ V → ∀𝑥𝐴 {𝑦𝐴𝑦𝑅𝑥} ∈ V))
71, 6syld 45 . 2 (𝐴𝐵 → (∀𝑥𝐵 {𝑦𝐵𝑦𝑅𝑥} ∈ V → ∀𝑥𝐴 {𝑦𝐴𝑦𝑅𝑥} ∈ V))
8 df-se 4318 . 2 (𝑅 Se 𝐵 ↔ ∀𝑥𝐵 {𝑦𝐵𝑦𝑅𝑥} ∈ V)
9 df-se 4318 . 2 (𝑅 Se 𝐴 ↔ ∀𝑥𝐴 {𝑦𝐴𝑦𝑅𝑥} ∈ V)
107, 8, 93imtr4g 204 1 (𝐴𝐵 → (𝑅 Se 𝐵𝑅 Se 𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2141  wral 2448  {crab 2452  Vcvv 2730  wss 3121   class class class wbr 3989   Se wse 4314
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152  ax-sep 4107
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rab 2457  df-v 2732  df-in 3127  df-ss 3134  df-se 4318
This theorem is referenced by:  seeq2  4325
  Copyright terms: Public domain W3C validator