Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-nn0suc Unicode version

Theorem bj-nn0suc 15900
Description: Proof of (biconditional form of) nn0suc 4652 from the core axioms of CZF. See also bj-nn0sucALT 15914. As a characterization of the elements of  om, this could be labeled "elom". (Contributed by BJ, 19-Nov-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-nn0suc  |-  ( A  e.  om  <->  ( A  =  (/)  \/  E. x  e.  om  A  =  suc  x ) )
Distinct variable group:    x, A

Proof of Theorem bj-nn0suc
StepHypRef Expression
1 bj-nn0suc0 15886 . . 3  |-  ( A  e.  om  ->  ( A  =  (/)  \/  E. x  e.  A  A  =  suc  x ) )
2 bj-omtrans 15892 . . . . 5  |-  ( A  e.  om  ->  A  C_ 
om )
3 ssrexv 3258 . . . . 5  |-  ( A 
C_  om  ->  ( E. x  e.  A  A  =  suc  x  ->  E. x  e.  om  A  =  suc  x ) )
42, 3syl 14 . . . 4  |-  ( A  e.  om  ->  ( E. x  e.  A  A  =  suc  x  ->  E. x  e.  om  A  =  suc  x ) )
54orim2d 790 . . 3  |-  ( A  e.  om  ->  (
( A  =  (/)  \/ 
E. x  e.  A  A  =  suc  x )  ->  ( A  =  (/)  \/  E. x  e. 
om  A  =  suc  x ) ) )
61, 5mpd 13 . 2  |-  ( A  e.  om  ->  ( A  =  (/)  \/  E. x  e.  om  A  =  suc  x ) )
7 peano1 4642 . . . 4  |-  (/)  e.  om
8 eleq1 2268 . . . 4  |-  ( A  =  (/)  ->  ( A  e.  om  <->  (/)  e.  om ) )
97, 8mpbiri 168 . . 3  |-  ( A  =  (/)  ->  A  e. 
om )
10 bj-peano2 15875 . . . . 5  |-  ( x  e.  om  ->  suc  x  e.  om )
11 eleq1a 2277 . . . . . 6  |-  ( suc  x  e.  om  ->  ( A  =  suc  x  ->  A  e.  om )
)
1211imp 124 . . . . 5  |-  ( ( suc  x  e.  om  /\  A  =  suc  x
)  ->  A  e.  om )
1310, 12sylan 283 . . . 4  |-  ( ( x  e.  om  /\  A  =  suc  x )  ->  A  e.  om )
1413rexlimiva 2618 . . 3  |-  ( E. x  e.  om  A  =  suc  x  ->  A  e.  om )
159, 14jaoi 718 . 2  |-  ( ( A  =  (/)  \/  E. x  e.  om  A  =  suc  x )  ->  A  e.  om )
166, 15impbii 126 1  |-  ( A  e.  om  <->  ( A  =  (/)  \/  E. x  e.  om  A  =  suc  x ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    \/ wo 710    = wceq 1373    e. wcel 2176   E.wrex 2485    C_ wss 3166   (/)c0 3460   suc csuc 4412   omcom 4638
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-nul 4170  ax-pr 4253  ax-un 4480  ax-bd0 15749  ax-bdim 15750  ax-bdan 15751  ax-bdor 15752  ax-bdn 15753  ax-bdal 15754  ax-bdex 15755  ax-bdeq 15756  ax-bdel 15757  ax-bdsb 15758  ax-bdsep 15820  ax-infvn 15877
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-rab 2493  df-v 2774  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-sn 3639  df-pr 3640  df-uni 3851  df-int 3886  df-suc 4418  df-iom 4639  df-bdc 15777  df-bj-ind 15863
This theorem is referenced by:  bj-findis  15915
  Copyright terms: Public domain W3C validator