Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-nn0suc Unicode version

Theorem bj-nn0suc 16099
Description: Proof of (biconditional form of) nn0suc 4670 from the core axioms of CZF. See also bj-nn0sucALT 16113. As a characterization of the elements of  om, this could be labeled "elom". (Contributed by BJ, 19-Nov-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-nn0suc  |-  ( A  e.  om  <->  ( A  =  (/)  \/  E. x  e.  om  A  =  suc  x ) )
Distinct variable group:    x, A

Proof of Theorem bj-nn0suc
StepHypRef Expression
1 bj-nn0suc0 16085 . . 3  |-  ( A  e.  om  ->  ( A  =  (/)  \/  E. x  e.  A  A  =  suc  x ) )
2 bj-omtrans 16091 . . . . 5  |-  ( A  e.  om  ->  A  C_ 
om )
3 ssrexv 3266 . . . . 5  |-  ( A 
C_  om  ->  ( E. x  e.  A  A  =  suc  x  ->  E. x  e.  om  A  =  suc  x ) )
42, 3syl 14 . . . 4  |-  ( A  e.  om  ->  ( E. x  e.  A  A  =  suc  x  ->  E. x  e.  om  A  =  suc  x ) )
54orim2d 790 . . 3  |-  ( A  e.  om  ->  (
( A  =  (/)  \/ 
E. x  e.  A  A  =  suc  x )  ->  ( A  =  (/)  \/  E. x  e. 
om  A  =  suc  x ) ) )
61, 5mpd 13 . 2  |-  ( A  e.  om  ->  ( A  =  (/)  \/  E. x  e.  om  A  =  suc  x ) )
7 peano1 4660 . . . 4  |-  (/)  e.  om
8 eleq1 2270 . . . 4  |-  ( A  =  (/)  ->  ( A  e.  om  <->  (/)  e.  om ) )
97, 8mpbiri 168 . . 3  |-  ( A  =  (/)  ->  A  e. 
om )
10 bj-peano2 16074 . . . . 5  |-  ( x  e.  om  ->  suc  x  e.  om )
11 eleq1a 2279 . . . . . 6  |-  ( suc  x  e.  om  ->  ( A  =  suc  x  ->  A  e.  om )
)
1211imp 124 . . . . 5  |-  ( ( suc  x  e.  om  /\  A  =  suc  x
)  ->  A  e.  om )
1310, 12sylan 283 . . . 4  |-  ( ( x  e.  om  /\  A  =  suc  x )  ->  A  e.  om )
1413rexlimiva 2620 . . 3  |-  ( E. x  e.  om  A  =  suc  x  ->  A  e.  om )
159, 14jaoi 718 . 2  |-  ( ( A  =  (/)  \/  E. x  e.  om  A  =  suc  x )  ->  A  e.  om )
166, 15impbii 126 1  |-  ( A  e.  om  <->  ( A  =  (/)  \/  E. x  e.  om  A  =  suc  x ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    \/ wo 710    = wceq 1373    e. wcel 2178   E.wrex 2487    C_ wss 3174   (/)c0 3468   suc csuc 4430   omcom 4656
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-nul 4186  ax-pr 4269  ax-un 4498  ax-bd0 15948  ax-bdim 15949  ax-bdan 15950  ax-bdor 15951  ax-bdn 15952  ax-bdal 15953  ax-bdex 15954  ax-bdeq 15955  ax-bdel 15956  ax-bdsb 15957  ax-bdsep 16019  ax-infvn 16076
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-rab 2495  df-v 2778  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-sn 3649  df-pr 3650  df-uni 3865  df-int 3900  df-suc 4436  df-iom 4657  df-bdc 15976  df-bj-ind 16062
This theorem is referenced by:  bj-findis  16114
  Copyright terms: Public domain W3C validator