| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-nn0suc | Unicode version | ||
| Description: Proof of (biconditional
form of) nn0suc 4641 from the core axioms of CZF.
See also bj-nn0sucALT 15708. As a characterization of the elements of
|
| Ref | Expression |
|---|---|
| bj-nn0suc |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bj-nn0suc0 15680 |
. . 3
| |
| 2 | bj-omtrans 15686 |
. . . . 5
| |
| 3 | ssrexv 3249 |
. . . . 5
| |
| 4 | 2, 3 | syl 14 |
. . . 4
|
| 5 | 4 | orim2d 789 |
. . 3
|
| 6 | 1, 5 | mpd 13 |
. 2
|
| 7 | peano1 4631 |
. . . 4
| |
| 8 | eleq1 2259 |
. . . 4
| |
| 9 | 7, 8 | mpbiri 168 |
. . 3
|
| 10 | bj-peano2 15669 |
. . . . 5
| |
| 11 | eleq1a 2268 |
. . . . . 6
| |
| 12 | 11 | imp 124 |
. . . . 5
|
| 13 | 10, 12 | sylan 283 |
. . . 4
|
| 14 | 13 | rexlimiva 2609 |
. . 3
|
| 15 | 9, 14 | jaoi 717 |
. 2
|
| 16 | 6, 15 | impbii 126 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-nul 4160 ax-pr 4243 ax-un 4469 ax-bd0 15543 ax-bdim 15544 ax-bdan 15545 ax-bdor 15546 ax-bdn 15547 ax-bdal 15548 ax-bdex 15549 ax-bdeq 15550 ax-bdel 15551 ax-bdsb 15552 ax-bdsep 15614 ax-infvn 15671 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-sn 3629 df-pr 3630 df-uni 3841 df-int 3876 df-suc 4407 df-iom 4628 df-bdc 15571 df-bj-ind 15657 |
| This theorem is referenced by: bj-findis 15709 |
| Copyright terms: Public domain | W3C validator |