Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-nn0suc | Unicode version |
Description: Proof of (biconditional form of) nn0suc 4561 from the core axioms of CZF. See also bj-nn0sucALT 13513. As a characterization of the elements of , this could be labeled "elom". (Contributed by BJ, 19-Nov-2019.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bj-nn0suc |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-nn0suc0 13485 | . . 3 | |
2 | bj-omtrans 13491 | . . . . 5 | |
3 | ssrexv 3193 | . . . . 5 | |
4 | 2, 3 | syl 14 | . . . 4 |
5 | 4 | orim2d 778 | . . 3 |
6 | 1, 5 | mpd 13 | . 2 |
7 | peano1 4551 | . . . 4 | |
8 | eleq1 2220 | . . . 4 | |
9 | 7, 8 | mpbiri 167 | . . 3 |
10 | bj-peano2 13474 | . . . . 5 | |
11 | eleq1a 2229 | . . . . . 6 | |
12 | 11 | imp 123 | . . . . 5 |
13 | 10, 12 | sylan 281 | . . . 4 |
14 | 13 | rexlimiva 2569 | . . 3 |
15 | 9, 14 | jaoi 706 | . 2 |
16 | 6, 15 | impbii 125 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 104 wo 698 wceq 1335 wcel 2128 wrex 2436 wss 3102 c0 3394 csuc 4324 com 4547 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-nul 4090 ax-pr 4168 ax-un 4392 ax-bd0 13348 ax-bdim 13349 ax-bdan 13350 ax-bdor 13351 ax-bdn 13352 ax-bdal 13353 ax-bdex 13354 ax-bdeq 13355 ax-bdel 13356 ax-bdsb 13357 ax-bdsep 13419 ax-infvn 13476 |
This theorem depends on definitions: df-bi 116 df-tru 1338 df-fal 1341 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ral 2440 df-rex 2441 df-rab 2444 df-v 2714 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-nul 3395 df-sn 3566 df-pr 3567 df-uni 3773 df-int 3808 df-suc 4330 df-iom 4548 df-bdc 13376 df-bj-ind 13462 |
This theorem is referenced by: bj-findis 13514 |
Copyright terms: Public domain | W3C validator |