Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-nn0suc Unicode version

Theorem bj-nn0suc 12964
Description: Proof of (biconditional form of) nn0suc 4486 from the core axioms of CZF. See also bj-nn0sucALT 12978. As a characterization of the elements of  om, this could be labeled "elom". (Contributed by BJ, 19-Nov-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-nn0suc  |-  ( A  e.  om  <->  ( A  =  (/)  \/  E. x  e.  om  A  =  suc  x ) )
Distinct variable group:    x, A

Proof of Theorem bj-nn0suc
StepHypRef Expression
1 bj-nn0suc0 12950 . . 3  |-  ( A  e.  om  ->  ( A  =  (/)  \/  E. x  e.  A  A  =  suc  x ) )
2 bj-omtrans 12956 . . . . 5  |-  ( A  e.  om  ->  A  C_ 
om )
3 ssrexv 3130 . . . . 5  |-  ( A 
C_  om  ->  ( E. x  e.  A  A  =  suc  x  ->  E. x  e.  om  A  =  suc  x ) )
42, 3syl 14 . . . 4  |-  ( A  e.  om  ->  ( E. x  e.  A  A  =  suc  x  ->  E. x  e.  om  A  =  suc  x ) )
54orim2d 760 . . 3  |-  ( A  e.  om  ->  (
( A  =  (/)  \/ 
E. x  e.  A  A  =  suc  x )  ->  ( A  =  (/)  \/  E. x  e. 
om  A  =  suc  x ) ) )
61, 5mpd 13 . 2  |-  ( A  e.  om  ->  ( A  =  (/)  \/  E. x  e.  om  A  =  suc  x ) )
7 peano1 4476 . . . 4  |-  (/)  e.  om
8 eleq1 2178 . . . 4  |-  ( A  =  (/)  ->  ( A  e.  om  <->  (/)  e.  om ) )
97, 8mpbiri 167 . . 3  |-  ( A  =  (/)  ->  A  e. 
om )
10 bj-peano2 12939 . . . . 5  |-  ( x  e.  om  ->  suc  x  e.  om )
11 eleq1a 2187 . . . . . 6  |-  ( suc  x  e.  om  ->  ( A  =  suc  x  ->  A  e.  om )
)
1211imp 123 . . . . 5  |-  ( ( suc  x  e.  om  /\  A  =  suc  x
)  ->  A  e.  om )
1310, 12sylan 279 . . . 4  |-  ( ( x  e.  om  /\  A  =  suc  x )  ->  A  e.  om )
1413rexlimiva 2519 . . 3  |-  ( E. x  e.  om  A  =  suc  x  ->  A  e.  om )
159, 14jaoi 688 . 2  |-  ( ( A  =  (/)  \/  E. x  e.  om  A  =  suc  x )  ->  A  e.  om )
166, 15impbii 125 1  |-  ( A  e.  om  <->  ( A  =  (/)  \/  E. x  e.  om  A  =  suc  x ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104    \/ wo 680    = wceq 1314    e. wcel 1463   E.wrex 2392    C_ wss 3039   (/)c0 3331   suc csuc 4255   omcom 4472
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-13 1474  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-nul 4022  ax-pr 4099  ax-un 4323  ax-bd0 12813  ax-bdim 12814  ax-bdan 12815  ax-bdor 12816  ax-bdn 12817  ax-bdal 12818  ax-bdex 12819  ax-bdeq 12820  ax-bdel 12821  ax-bdsb 12822  ax-bdsep 12884  ax-infvn 12941
This theorem depends on definitions:  df-bi 116  df-tru 1317  df-fal 1320  df-nf 1420  df-sb 1719  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2245  df-ral 2396  df-rex 2397  df-rab 2400  df-v 2660  df-dif 3041  df-un 3043  df-in 3045  df-ss 3052  df-nul 3332  df-sn 3501  df-pr 3502  df-uni 3705  df-int 3740  df-suc 4261  df-iom 4473  df-bdc 12841  df-bj-ind 12927
This theorem is referenced by:  bj-findis  12979
  Copyright terms: Public domain W3C validator