ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  simplr3 Unicode version

Theorem simplr3 987
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simplr3  |-  ( ( ( th  /\  ( ph  /\  ps  /\  ch ) )  /\  ta )  ->  ch )

Proof of Theorem simplr3
StepHypRef Expression
1 simpr3 951 . 2  |-  ( ( th  /\  ( ph  /\ 
ps  /\  ch )
)  ->  ch )
21adantr 270 1  |-  ( ( ( th  /\  ( ph  /\  ps  /\  ch ) )  /\  ta )  ->  ch )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    /\ w3a 924
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106
This theorem depends on definitions:  df-bi 115  df-3an 926
This theorem is referenced by:  prarloclemlt  7052  prarloclemlo  7053  resqrexlemdecn  10445  isummolem2  10772  isumss2  10785
  Copyright terms: Public domain W3C validator