| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mulgnn0dir | Unicode version | ||
| Description: Sum of group multiples,
generalized to |
| Ref | Expression |
|---|---|
| mulgnndir.b |
|
| mulgnndir.t |
|
| mulgnndir.p |
|
| Ref | Expression |
|---|---|
| mulgnn0dir |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mndsgrp 13368 |
. . . . . 6
| |
| 2 | 1 | adantr 276 |
. . . . 5
|
| 3 | 2 | ad2antrr 488 |
. . . 4
|
| 4 | simplr 528 |
. . . 4
| |
| 5 | simpr 110 |
. . . 4
| |
| 6 | simpr3 1008 |
. . . . 5
| |
| 7 | 6 | ad2antrr 488 |
. . . 4
|
| 8 | mulgnndir.b |
. . . . 5
| |
| 9 | mulgnndir.t |
. . . . 5
| |
| 10 | mulgnndir.p |
. . . . 5
| |
| 11 | 8, 9, 10 | mulgnndir 13602 |
. . . 4
|
| 12 | 3, 4, 5, 7, 11 | syl13anc 1252 |
. . 3
|
| 13 | simpll 527 |
. . . . . 6
| |
| 14 | simpr1 1006 |
. . . . . . . 8
| |
| 15 | 14 | adantr 276 |
. . . . . . 7
|
| 16 | simplr3 1044 |
. . . . . . 7
| |
| 17 | 8, 9 | mulgnn0cl 13589 |
. . . . . . 7
|
| 18 | 13, 15, 16, 17 | syl3anc 1250 |
. . . . . 6
|
| 19 | eqid 2207 |
. . . . . . 7
| |
| 20 | 8, 10, 19 | mndrid 13383 |
. . . . . 6
|
| 21 | 13, 18, 20 | syl2anc 411 |
. . . . 5
|
| 22 | simpr 110 |
. . . . . . . 8
| |
| 23 | 22 | oveq1d 5982 |
. . . . . . 7
|
| 24 | 8, 19, 9 | mulg0 13576 |
. . . . . . . 8
|
| 25 | 16, 24 | syl 14 |
. . . . . . 7
|
| 26 | 23, 25 | eqtrd 2240 |
. . . . . 6
|
| 27 | 26 | oveq2d 5983 |
. . . . 5
|
| 28 | 22 | oveq2d 5983 |
. . . . . . 7
|
| 29 | 15 | nn0cnd 9385 |
. . . . . . . 8
|
| 30 | 29 | addridd 8256 |
. . . . . . 7
|
| 31 | 28, 30 | eqtrd 2240 |
. . . . . 6
|
| 32 | 31 | oveq1d 5982 |
. . . . 5
|
| 33 | 21, 27, 32 | 3eqtr4rd 2251 |
. . . 4
|
| 34 | 33 | adantlr 477 |
. . 3
|
| 35 | simpr2 1007 |
. . . . 5
| |
| 36 | elnn0 9332 |
. . . . 5
| |
| 37 | 35, 36 | sylib 122 |
. . . 4
|
| 38 | 37 | adantr 276 |
. . 3
|
| 39 | 12, 34, 38 | mpjaodan 800 |
. 2
|
| 40 | simpll 527 |
. . . 4
| |
| 41 | simplr2 1043 |
. . . . 5
| |
| 42 | simplr3 1044 |
. . . . 5
| |
| 43 | 8, 9 | mulgnn0cl 13589 |
. . . . 5
|
| 44 | 40, 41, 42, 43 | syl3anc 1250 |
. . . 4
|
| 45 | 8, 10, 19 | mndlid 13382 |
. . . 4
|
| 46 | 40, 44, 45 | syl2anc 411 |
. . 3
|
| 47 | simpr 110 |
. . . . . 6
| |
| 48 | 47 | oveq1d 5982 |
. . . . 5
|
| 49 | 42, 24 | syl 14 |
. . . . 5
|
| 50 | 48, 49 | eqtrd 2240 |
. . . 4
|
| 51 | 50 | oveq1d 5982 |
. . 3
|
| 52 | 47 | oveq1d 5982 |
. . . . 5
|
| 53 | 41 | nn0cnd 9385 |
. . . . . 6
|
| 54 | 53 | addlidd 8257 |
. . . . 5
|
| 55 | 52, 54 | eqtrd 2240 |
. . . 4
|
| 56 | 55 | oveq1d 5982 |
. . 3
|
| 57 | 46, 51, 56 | 3eqtr4rd 2251 |
. 2
|
| 58 | elnn0 9332 |
. . 3
| |
| 59 | 14, 58 | sylib 122 |
. 2
|
| 60 | 39, 57, 59 | mpjaodan 800 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-coll 4175 ax-sep 4178 ax-nul 4186 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-iinf 4654 ax-cnex 8051 ax-resscn 8052 ax-1cn 8053 ax-1re 8054 ax-icn 8055 ax-addcl 8056 ax-addrcl 8057 ax-mulcl 8058 ax-addcom 8060 ax-addass 8062 ax-distr 8064 ax-i2m1 8065 ax-0lt1 8066 ax-0id 8068 ax-rnegex 8069 ax-cnre 8071 ax-pre-ltirr 8072 ax-pre-ltwlin 8073 ax-pre-lttrn 8074 ax-pre-ltadd 8076 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-reu 2493 df-rmo 2494 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-if 3580 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-tr 4159 df-id 4358 df-iord 4431 df-on 4433 df-ilim 4434 df-suc 4436 df-iom 4657 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-riota 5922 df-ov 5970 df-oprab 5971 df-mpo 5972 df-1st 6249 df-2nd 6250 df-recs 6414 df-frec 6500 df-pnf 8144 df-mnf 8145 df-xr 8146 df-ltxr 8147 df-le 8148 df-sub 8280 df-neg 8281 df-inn 9072 df-2 9130 df-n0 9331 df-z 9408 df-uz 9684 df-fz 10166 df-seqfrec 10630 df-ndx 12950 df-slot 12951 df-base 12953 df-plusg 13037 df-0g 13205 df-mgm 13303 df-sgrp 13349 df-mnd 13364 df-minusg 13451 df-mulg 13571 |
| This theorem is referenced by: mulgdirlem 13604 |
| Copyright terms: Public domain | W3C validator |