| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mulgnn0dir | Unicode version | ||
| Description: Sum of group multiples,
generalized to |
| Ref | Expression |
|---|---|
| mulgnndir.b |
|
| mulgnndir.t |
|
| mulgnndir.p |
|
| Ref | Expression |
|---|---|
| mulgnn0dir |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mndsgrp 13062 |
. . . . . 6
| |
| 2 | 1 | adantr 276 |
. . . . 5
|
| 3 | 2 | ad2antrr 488 |
. . . 4
|
| 4 | simplr 528 |
. . . 4
| |
| 5 | simpr 110 |
. . . 4
| |
| 6 | simpr3 1007 |
. . . . 5
| |
| 7 | 6 | ad2antrr 488 |
. . . 4
|
| 8 | mulgnndir.b |
. . . . 5
| |
| 9 | mulgnndir.t |
. . . . 5
| |
| 10 | mulgnndir.p |
. . . . 5
| |
| 11 | 8, 9, 10 | mulgnndir 13281 |
. . . 4
|
| 12 | 3, 4, 5, 7, 11 | syl13anc 1251 |
. . 3
|
| 13 | simpll 527 |
. . . . . 6
| |
| 14 | simpr1 1005 |
. . . . . . . 8
| |
| 15 | 14 | adantr 276 |
. . . . . . 7
|
| 16 | simplr3 1043 |
. . . . . . 7
| |
| 17 | 8, 9 | mulgnn0cl 13268 |
. . . . . . 7
|
| 18 | 13, 15, 16, 17 | syl3anc 1249 |
. . . . . 6
|
| 19 | eqid 2196 |
. . . . . . 7
| |
| 20 | 8, 10, 19 | mndrid 13077 |
. . . . . 6
|
| 21 | 13, 18, 20 | syl2anc 411 |
. . . . 5
|
| 22 | simpr 110 |
. . . . . . . 8
| |
| 23 | 22 | oveq1d 5937 |
. . . . . . 7
|
| 24 | 8, 19, 9 | mulg0 13255 |
. . . . . . . 8
|
| 25 | 16, 24 | syl 14 |
. . . . . . 7
|
| 26 | 23, 25 | eqtrd 2229 |
. . . . . 6
|
| 27 | 26 | oveq2d 5938 |
. . . . 5
|
| 28 | 22 | oveq2d 5938 |
. . . . . . 7
|
| 29 | 15 | nn0cnd 9304 |
. . . . . . . 8
|
| 30 | 29 | addridd 8175 |
. . . . . . 7
|
| 31 | 28, 30 | eqtrd 2229 |
. . . . . 6
|
| 32 | 31 | oveq1d 5937 |
. . . . 5
|
| 33 | 21, 27, 32 | 3eqtr4rd 2240 |
. . . 4
|
| 34 | 33 | adantlr 477 |
. . 3
|
| 35 | simpr2 1006 |
. . . . 5
| |
| 36 | elnn0 9251 |
. . . . 5
| |
| 37 | 35, 36 | sylib 122 |
. . . 4
|
| 38 | 37 | adantr 276 |
. . 3
|
| 39 | 12, 34, 38 | mpjaodan 799 |
. 2
|
| 40 | simpll 527 |
. . . 4
| |
| 41 | simplr2 1042 |
. . . . 5
| |
| 42 | simplr3 1043 |
. . . . 5
| |
| 43 | 8, 9 | mulgnn0cl 13268 |
. . . . 5
|
| 44 | 40, 41, 42, 43 | syl3anc 1249 |
. . . 4
|
| 45 | 8, 10, 19 | mndlid 13076 |
. . . 4
|
| 46 | 40, 44, 45 | syl2anc 411 |
. . 3
|
| 47 | simpr 110 |
. . . . . 6
| |
| 48 | 47 | oveq1d 5937 |
. . . . 5
|
| 49 | 42, 24 | syl 14 |
. . . . 5
|
| 50 | 48, 49 | eqtrd 2229 |
. . . 4
|
| 51 | 50 | oveq1d 5937 |
. . 3
|
| 52 | 47 | oveq1d 5937 |
. . . . 5
|
| 53 | 41 | nn0cnd 9304 |
. . . . . 6
|
| 54 | 53 | addlidd 8176 |
. . . . 5
|
| 55 | 52, 54 | eqtrd 2229 |
. . . 4
|
| 56 | 55 | oveq1d 5937 |
. . 3
|
| 57 | 46, 51, 56 | 3eqtr4rd 2240 |
. 2
|
| 58 | elnn0 9251 |
. . 3
| |
| 59 | 14, 58 | sylib 122 |
. 2
|
| 60 | 39, 57, 59 | mpjaodan 799 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-iinf 4624 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-addcom 7979 ax-addass 7981 ax-distr 7983 ax-i2m1 7984 ax-0lt1 7985 ax-0id 7987 ax-rnegex 7988 ax-cnre 7990 ax-pre-ltirr 7991 ax-pre-ltwlin 7992 ax-pre-lttrn 7993 ax-pre-ltadd 7995 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-if 3562 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-tr 4132 df-id 4328 df-iord 4401 df-on 4403 df-ilim 4404 df-suc 4406 df-iom 4627 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-recs 6363 df-frec 6449 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 df-sub 8199 df-neg 8200 df-inn 8991 df-2 9049 df-n0 9250 df-z 9327 df-uz 9602 df-fz 10084 df-seqfrec 10540 df-ndx 12681 df-slot 12682 df-base 12684 df-plusg 12768 df-0g 12929 df-mgm 12999 df-sgrp 13045 df-mnd 13058 df-minusg 13136 df-mulg 13250 |
| This theorem is referenced by: mulgdirlem 13283 |
| Copyright terms: Public domain | W3C validator |