ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulgnn0dir Unicode version

Theorem mulgnn0dir 13222
Description: Sum of group multiples, generalized to  NN0. (Contributed by Mario Carneiro, 11-Dec-2014.)
Hypotheses
Ref Expression
mulgnndir.b  |-  B  =  ( Base `  G
)
mulgnndir.t  |-  .x.  =  (.g
`  G )
mulgnndir.p  |-  .+  =  ( +g  `  G )
Assertion
Ref Expression
mulgnn0dir  |-  ( ( G  e.  Mnd  /\  ( M  e.  NN0  /\  N  e.  NN0  /\  X  e.  B )
)  ->  ( ( M  +  N )  .x.  X )  =  ( ( M  .x.  X
)  .+  ( N  .x.  X ) ) )

Proof of Theorem mulgnn0dir
StepHypRef Expression
1 mndsgrp 13002 . . . . . 6  |-  ( G  e.  Mnd  ->  G  e. Smgrp )
21adantr 276 . . . . 5  |-  ( ( G  e.  Mnd  /\  ( M  e.  NN0  /\  N  e.  NN0  /\  X  e.  B )
)  ->  G  e. Smgrp )
32ad2antrr 488 . . . 4  |-  ( ( ( ( G  e. 
Mnd  /\  ( M  e.  NN0  /\  N  e. 
NN0  /\  X  e.  B ) )  /\  M  e.  NN )  /\  N  e.  NN )  ->  G  e. Smgrp )
4 simplr 528 . . . 4  |-  ( ( ( ( G  e. 
Mnd  /\  ( M  e.  NN0  /\  N  e. 
NN0  /\  X  e.  B ) )  /\  M  e.  NN )  /\  N  e.  NN )  ->  M  e.  NN )
5 simpr 110 . . . 4  |-  ( ( ( ( G  e. 
Mnd  /\  ( M  e.  NN0  /\  N  e. 
NN0  /\  X  e.  B ) )  /\  M  e.  NN )  /\  N  e.  NN )  ->  N  e.  NN )
6 simpr3 1007 . . . . 5  |-  ( ( G  e.  Mnd  /\  ( M  e.  NN0  /\  N  e.  NN0  /\  X  e.  B )
)  ->  X  e.  B )
76ad2antrr 488 . . . 4  |-  ( ( ( ( G  e. 
Mnd  /\  ( M  e.  NN0  /\  N  e. 
NN0  /\  X  e.  B ) )  /\  M  e.  NN )  /\  N  e.  NN )  ->  X  e.  B
)
8 mulgnndir.b . . . . 5  |-  B  =  ( Base `  G
)
9 mulgnndir.t . . . . 5  |-  .x.  =  (.g
`  G )
10 mulgnndir.p . . . . 5  |-  .+  =  ( +g  `  G )
118, 9, 10mulgnndir 13221 . . . 4  |-  ( ( G  e. Smgrp  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B ) )  -> 
( ( M  +  N )  .x.  X
)  =  ( ( M  .x.  X ) 
.+  ( N  .x.  X ) ) )
123, 4, 5, 7, 11syl13anc 1251 . . 3  |-  ( ( ( ( G  e. 
Mnd  /\  ( M  e.  NN0  /\  N  e. 
NN0  /\  X  e.  B ) )  /\  M  e.  NN )  /\  N  e.  NN )  ->  ( ( M  +  N )  .x.  X )  =  ( ( M  .x.  X
)  .+  ( N  .x.  X ) ) )
13 simpll 527 . . . . . 6  |-  ( ( ( G  e.  Mnd  /\  ( M  e.  NN0  /\  N  e.  NN0  /\  X  e.  B )
)  /\  N  = 
0 )  ->  G  e.  Mnd )
14 simpr1 1005 . . . . . . . 8  |-  ( ( G  e.  Mnd  /\  ( M  e.  NN0  /\  N  e.  NN0  /\  X  e.  B )
)  ->  M  e.  NN0 )
1514adantr 276 . . . . . . 7  |-  ( ( ( G  e.  Mnd  /\  ( M  e.  NN0  /\  N  e.  NN0  /\  X  e.  B )
)  /\  N  = 
0 )  ->  M  e.  NN0 )
16 simplr3 1043 . . . . . . 7  |-  ( ( ( G  e.  Mnd  /\  ( M  e.  NN0  /\  N  e.  NN0  /\  X  e.  B )
)  /\  N  = 
0 )  ->  X  e.  B )
178, 9mulgnn0cl 13208 . . . . . . 7  |-  ( ( G  e.  Mnd  /\  M  e.  NN0  /\  X  e.  B )  ->  ( M  .x.  X )  e.  B )
1813, 15, 16, 17syl3anc 1249 . . . . . 6  |-  ( ( ( G  e.  Mnd  /\  ( M  e.  NN0  /\  N  e.  NN0  /\  X  e.  B )
)  /\  N  = 
0 )  ->  ( M  .x.  X )  e.  B )
19 eqid 2193 . . . . . . 7  |-  ( 0g
`  G )  =  ( 0g `  G
)
208, 10, 19mndrid 13017 . . . . . 6  |-  ( ( G  e.  Mnd  /\  ( M  .x.  X )  e.  B )  -> 
( ( M  .x.  X )  .+  ( 0g `  G ) )  =  ( M  .x.  X ) )
2113, 18, 20syl2anc 411 . . . . 5  |-  ( ( ( G  e.  Mnd  /\  ( M  e.  NN0  /\  N  e.  NN0  /\  X  e.  B )
)  /\  N  = 
0 )  ->  (
( M  .x.  X
)  .+  ( 0g `  G ) )  =  ( M  .x.  X
) )
22 simpr 110 . . . . . . . 8  |-  ( ( ( G  e.  Mnd  /\  ( M  e.  NN0  /\  N  e.  NN0  /\  X  e.  B )
)  /\  N  = 
0 )  ->  N  =  0 )
2322oveq1d 5933 . . . . . . 7  |-  ( ( ( G  e.  Mnd  /\  ( M  e.  NN0  /\  N  e.  NN0  /\  X  e.  B )
)  /\  N  = 
0 )  ->  ( N  .x.  X )  =  ( 0  .x.  X
) )
248, 19, 9mulg0 13195 . . . . . . . 8  |-  ( X  e.  B  ->  (
0  .x.  X )  =  ( 0g `  G ) )
2516, 24syl 14 . . . . . . 7  |-  ( ( ( G  e.  Mnd  /\  ( M  e.  NN0  /\  N  e.  NN0  /\  X  e.  B )
)  /\  N  = 
0 )  ->  (
0  .x.  X )  =  ( 0g `  G ) )
2623, 25eqtrd 2226 . . . . . 6  |-  ( ( ( G  e.  Mnd  /\  ( M  e.  NN0  /\  N  e.  NN0  /\  X  e.  B )
)  /\  N  = 
0 )  ->  ( N  .x.  X )  =  ( 0g `  G
) )
2726oveq2d 5934 . . . . 5  |-  ( ( ( G  e.  Mnd  /\  ( M  e.  NN0  /\  N  e.  NN0  /\  X  e.  B )
)  /\  N  = 
0 )  ->  (
( M  .x.  X
)  .+  ( N  .x.  X ) )  =  ( ( M  .x.  X )  .+  ( 0g `  G ) ) )
2822oveq2d 5934 . . . . . . 7  |-  ( ( ( G  e.  Mnd  /\  ( M  e.  NN0  /\  N  e.  NN0  /\  X  e.  B )
)  /\  N  = 
0 )  ->  ( M  +  N )  =  ( M  + 
0 ) )
2915nn0cnd 9295 . . . . . . . 8  |-  ( ( ( G  e.  Mnd  /\  ( M  e.  NN0  /\  N  e.  NN0  /\  X  e.  B )
)  /\  N  = 
0 )  ->  M  e.  CC )
3029addridd 8168 . . . . . . 7  |-  ( ( ( G  e.  Mnd  /\  ( M  e.  NN0  /\  N  e.  NN0  /\  X  e.  B )
)  /\  N  = 
0 )  ->  ( M  +  0 )  =  M )
3128, 30eqtrd 2226 . . . . . 6  |-  ( ( ( G  e.  Mnd  /\  ( M  e.  NN0  /\  N  e.  NN0  /\  X  e.  B )
)  /\  N  = 
0 )  ->  ( M  +  N )  =  M )
3231oveq1d 5933 . . . . 5  |-  ( ( ( G  e.  Mnd  /\  ( M  e.  NN0  /\  N  e.  NN0  /\  X  e.  B )
)  /\  N  = 
0 )  ->  (
( M  +  N
)  .x.  X )  =  ( M  .x.  X ) )
3321, 27, 323eqtr4rd 2237 . . . 4  |-  ( ( ( G  e.  Mnd  /\  ( M  e.  NN0  /\  N  e.  NN0  /\  X  e.  B )
)  /\  N  = 
0 )  ->  (
( M  +  N
)  .x.  X )  =  ( ( M 
.x.  X )  .+  ( N  .x.  X ) ) )
3433adantlr 477 . . 3  |-  ( ( ( ( G  e. 
Mnd  /\  ( M  e.  NN0  /\  N  e. 
NN0  /\  X  e.  B ) )  /\  M  e.  NN )  /\  N  =  0
)  ->  ( ( M  +  N )  .x.  X )  =  ( ( M  .x.  X
)  .+  ( N  .x.  X ) ) )
35 simpr2 1006 . . . . 5  |-  ( ( G  e.  Mnd  /\  ( M  e.  NN0  /\  N  e.  NN0  /\  X  e.  B )
)  ->  N  e.  NN0 )
36 elnn0 9242 . . . . 5  |-  ( N  e.  NN0  <->  ( N  e.  NN  \/  N  =  0 ) )
3735, 36sylib 122 . . . 4  |-  ( ( G  e.  Mnd  /\  ( M  e.  NN0  /\  N  e.  NN0  /\  X  e.  B )
)  ->  ( N  e.  NN  \/  N  =  0 ) )
3837adantr 276 . . 3  |-  ( ( ( G  e.  Mnd  /\  ( M  e.  NN0  /\  N  e.  NN0  /\  X  e.  B )
)  /\  M  e.  NN )  ->  ( N  e.  NN  \/  N  =  0 ) )
3912, 34, 38mpjaodan 799 . 2  |-  ( ( ( G  e.  Mnd  /\  ( M  e.  NN0  /\  N  e.  NN0  /\  X  e.  B )
)  /\  M  e.  NN )  ->  ( ( M  +  N ) 
.x.  X )  =  ( ( M  .x.  X )  .+  ( N  .x.  X ) ) )
40 simpll 527 . . . 4  |-  ( ( ( G  e.  Mnd  /\  ( M  e.  NN0  /\  N  e.  NN0  /\  X  e.  B )
)  /\  M  = 
0 )  ->  G  e.  Mnd )
41 simplr2 1042 . . . . 5  |-  ( ( ( G  e.  Mnd  /\  ( M  e.  NN0  /\  N  e.  NN0  /\  X  e.  B )
)  /\  M  = 
0 )  ->  N  e.  NN0 )
42 simplr3 1043 . . . . 5  |-  ( ( ( G  e.  Mnd  /\  ( M  e.  NN0  /\  N  e.  NN0  /\  X  e.  B )
)  /\  M  = 
0 )  ->  X  e.  B )
438, 9mulgnn0cl 13208 . . . . 5  |-  ( ( G  e.  Mnd  /\  N  e.  NN0  /\  X  e.  B )  ->  ( N  .x.  X )  e.  B )
4440, 41, 42, 43syl3anc 1249 . . . 4  |-  ( ( ( G  e.  Mnd  /\  ( M  e.  NN0  /\  N  e.  NN0  /\  X  e.  B )
)  /\  M  = 
0 )  ->  ( N  .x.  X )  e.  B )
458, 10, 19mndlid 13016 . . . 4  |-  ( ( G  e.  Mnd  /\  ( N  .x.  X )  e.  B )  -> 
( ( 0g `  G )  .+  ( N  .x.  X ) )  =  ( N  .x.  X ) )
4640, 44, 45syl2anc 411 . . 3  |-  ( ( ( G  e.  Mnd  /\  ( M  e.  NN0  /\  N  e.  NN0  /\  X  e.  B )
)  /\  M  = 
0 )  ->  (
( 0g `  G
)  .+  ( N  .x.  X ) )  =  ( N  .x.  X
) )
47 simpr 110 . . . . . 6  |-  ( ( ( G  e.  Mnd  /\  ( M  e.  NN0  /\  N  e.  NN0  /\  X  e.  B )
)  /\  M  = 
0 )  ->  M  =  0 )
4847oveq1d 5933 . . . . 5  |-  ( ( ( G  e.  Mnd  /\  ( M  e.  NN0  /\  N  e.  NN0  /\  X  e.  B )
)  /\  M  = 
0 )  ->  ( M  .x.  X )  =  ( 0  .x.  X
) )
4942, 24syl 14 . . . . 5  |-  ( ( ( G  e.  Mnd  /\  ( M  e.  NN0  /\  N  e.  NN0  /\  X  e.  B )
)  /\  M  = 
0 )  ->  (
0  .x.  X )  =  ( 0g `  G ) )
5048, 49eqtrd 2226 . . . 4  |-  ( ( ( G  e.  Mnd  /\  ( M  e.  NN0  /\  N  e.  NN0  /\  X  e.  B )
)  /\  M  = 
0 )  ->  ( M  .x.  X )  =  ( 0g `  G
) )
5150oveq1d 5933 . . 3  |-  ( ( ( G  e.  Mnd  /\  ( M  e.  NN0  /\  N  e.  NN0  /\  X  e.  B )
)  /\  M  = 
0 )  ->  (
( M  .x.  X
)  .+  ( N  .x.  X ) )  =  ( ( 0g `  G )  .+  ( N  .x.  X ) ) )
5247oveq1d 5933 . . . . 5  |-  ( ( ( G  e.  Mnd  /\  ( M  e.  NN0  /\  N  e.  NN0  /\  X  e.  B )
)  /\  M  = 
0 )  ->  ( M  +  N )  =  ( 0  +  N ) )
5341nn0cnd 9295 . . . . . 6  |-  ( ( ( G  e.  Mnd  /\  ( M  e.  NN0  /\  N  e.  NN0  /\  X  e.  B )
)  /\  M  = 
0 )  ->  N  e.  CC )
5453addlidd 8169 . . . . 5  |-  ( ( ( G  e.  Mnd  /\  ( M  e.  NN0  /\  N  e.  NN0  /\  X  e.  B )
)  /\  M  = 
0 )  ->  (
0  +  N )  =  N )
5552, 54eqtrd 2226 . . . 4  |-  ( ( ( G  e.  Mnd  /\  ( M  e.  NN0  /\  N  e.  NN0  /\  X  e.  B )
)  /\  M  = 
0 )  ->  ( M  +  N )  =  N )
5655oveq1d 5933 . . 3  |-  ( ( ( G  e.  Mnd  /\  ( M  e.  NN0  /\  N  e.  NN0  /\  X  e.  B )
)  /\  M  = 
0 )  ->  (
( M  +  N
)  .x.  X )  =  ( N  .x.  X ) )
5746, 51, 563eqtr4rd 2237 . 2  |-  ( ( ( G  e.  Mnd  /\  ( M  e.  NN0  /\  N  e.  NN0  /\  X  e.  B )
)  /\  M  = 
0 )  ->  (
( M  +  N
)  .x.  X )  =  ( ( M 
.x.  X )  .+  ( N  .x.  X ) ) )
58 elnn0 9242 . . 3  |-  ( M  e.  NN0  <->  ( M  e.  NN  \/  M  =  0 ) )
5914, 58sylib 122 . 2  |-  ( ( G  e.  Mnd  /\  ( M  e.  NN0  /\  N  e.  NN0  /\  X  e.  B )
)  ->  ( M  e.  NN  \/  M  =  0 ) )
6039, 57, 59mpjaodan 799 1  |-  ( ( G  e.  Mnd  /\  ( M  e.  NN0  /\  N  e.  NN0  /\  X  e.  B )
)  ->  ( ( M  +  N )  .x.  X )  =  ( ( M  .x.  X
)  .+  ( N  .x.  X ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    \/ wo 709    /\ w3a 980    = wceq 1364    e. wcel 2164   ` cfv 5254  (class class class)co 5918   0cc0 7872    + caddc 7875   NNcn 8982   NN0cn0 9240   Basecbs 12618   +g cplusg 12695   0gc0g 12867  Smgrpcsgrp 12984   Mndcmnd 12997  .gcmg 13189
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-addcom 7972  ax-addass 7974  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-0id 7980  ax-rnegex 7981  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-ltadd 7988
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-iord 4397  df-on 4399  df-ilim 4400  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-frec 6444  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-inn 8983  df-2 9041  df-n0 9241  df-z 9318  df-uz 9593  df-fz 10075  df-seqfrec 10519  df-ndx 12621  df-slot 12622  df-base 12624  df-plusg 12708  df-0g 12869  df-mgm 12939  df-sgrp 12985  df-mnd 12998  df-minusg 13076  df-mulg 13190
This theorem is referenced by:  mulgdirlem  13223
  Copyright terms: Public domain W3C validator