ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulgnn0dir Unicode version

Theorem mulgnn0dir 13689
Description: Sum of group multiples, generalized to  NN0. (Contributed by Mario Carneiro, 11-Dec-2014.)
Hypotheses
Ref Expression
mulgnndir.b  |-  B  =  ( Base `  G
)
mulgnndir.t  |-  .x.  =  (.g
`  G )
mulgnndir.p  |-  .+  =  ( +g  `  G )
Assertion
Ref Expression
mulgnn0dir  |-  ( ( G  e.  Mnd  /\  ( M  e.  NN0  /\  N  e.  NN0  /\  X  e.  B )
)  ->  ( ( M  +  N )  .x.  X )  =  ( ( M  .x.  X
)  .+  ( N  .x.  X ) ) )

Proof of Theorem mulgnn0dir
StepHypRef Expression
1 mndsgrp 13454 . . . . . 6  |-  ( G  e.  Mnd  ->  G  e. Smgrp )
21adantr 276 . . . . 5  |-  ( ( G  e.  Mnd  /\  ( M  e.  NN0  /\  N  e.  NN0  /\  X  e.  B )
)  ->  G  e. Smgrp )
32ad2antrr 488 . . . 4  |-  ( ( ( ( G  e. 
Mnd  /\  ( M  e.  NN0  /\  N  e. 
NN0  /\  X  e.  B ) )  /\  M  e.  NN )  /\  N  e.  NN )  ->  G  e. Smgrp )
4 simplr 528 . . . 4  |-  ( ( ( ( G  e. 
Mnd  /\  ( M  e.  NN0  /\  N  e. 
NN0  /\  X  e.  B ) )  /\  M  e.  NN )  /\  N  e.  NN )  ->  M  e.  NN )
5 simpr 110 . . . 4  |-  ( ( ( ( G  e. 
Mnd  /\  ( M  e.  NN0  /\  N  e. 
NN0  /\  X  e.  B ) )  /\  M  e.  NN )  /\  N  e.  NN )  ->  N  e.  NN )
6 simpr3 1029 . . . . 5  |-  ( ( G  e.  Mnd  /\  ( M  e.  NN0  /\  N  e.  NN0  /\  X  e.  B )
)  ->  X  e.  B )
76ad2antrr 488 . . . 4  |-  ( ( ( ( G  e. 
Mnd  /\  ( M  e.  NN0  /\  N  e. 
NN0  /\  X  e.  B ) )  /\  M  e.  NN )  /\  N  e.  NN )  ->  X  e.  B
)
8 mulgnndir.b . . . . 5  |-  B  =  ( Base `  G
)
9 mulgnndir.t . . . . 5  |-  .x.  =  (.g
`  G )
10 mulgnndir.p . . . . 5  |-  .+  =  ( +g  `  G )
118, 9, 10mulgnndir 13688 . . . 4  |-  ( ( G  e. Smgrp  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B ) )  -> 
( ( M  +  N )  .x.  X
)  =  ( ( M  .x.  X ) 
.+  ( N  .x.  X ) ) )
123, 4, 5, 7, 11syl13anc 1273 . . 3  |-  ( ( ( ( G  e. 
Mnd  /\  ( M  e.  NN0  /\  N  e. 
NN0  /\  X  e.  B ) )  /\  M  e.  NN )  /\  N  e.  NN )  ->  ( ( M  +  N )  .x.  X )  =  ( ( M  .x.  X
)  .+  ( N  .x.  X ) ) )
13 simpll 527 . . . . . 6  |-  ( ( ( G  e.  Mnd  /\  ( M  e.  NN0  /\  N  e.  NN0  /\  X  e.  B )
)  /\  N  = 
0 )  ->  G  e.  Mnd )
14 simpr1 1027 . . . . . . . 8  |-  ( ( G  e.  Mnd  /\  ( M  e.  NN0  /\  N  e.  NN0  /\  X  e.  B )
)  ->  M  e.  NN0 )
1514adantr 276 . . . . . . 7  |-  ( ( ( G  e.  Mnd  /\  ( M  e.  NN0  /\  N  e.  NN0  /\  X  e.  B )
)  /\  N  = 
0 )  ->  M  e.  NN0 )
16 simplr3 1065 . . . . . . 7  |-  ( ( ( G  e.  Mnd  /\  ( M  e.  NN0  /\  N  e.  NN0  /\  X  e.  B )
)  /\  N  = 
0 )  ->  X  e.  B )
178, 9mulgnn0cl 13675 . . . . . . 7  |-  ( ( G  e.  Mnd  /\  M  e.  NN0  /\  X  e.  B )  ->  ( M  .x.  X )  e.  B )
1813, 15, 16, 17syl3anc 1271 . . . . . 6  |-  ( ( ( G  e.  Mnd  /\  ( M  e.  NN0  /\  N  e.  NN0  /\  X  e.  B )
)  /\  N  = 
0 )  ->  ( M  .x.  X )  e.  B )
19 eqid 2229 . . . . . . 7  |-  ( 0g
`  G )  =  ( 0g `  G
)
208, 10, 19mndrid 13469 . . . . . 6  |-  ( ( G  e.  Mnd  /\  ( M  .x.  X )  e.  B )  -> 
( ( M  .x.  X )  .+  ( 0g `  G ) )  =  ( M  .x.  X ) )
2113, 18, 20syl2anc 411 . . . . 5  |-  ( ( ( G  e.  Mnd  /\  ( M  e.  NN0  /\  N  e.  NN0  /\  X  e.  B )
)  /\  N  = 
0 )  ->  (
( M  .x.  X
)  .+  ( 0g `  G ) )  =  ( M  .x.  X
) )
22 simpr 110 . . . . . . . 8  |-  ( ( ( G  e.  Mnd  /\  ( M  e.  NN0  /\  N  e.  NN0  /\  X  e.  B )
)  /\  N  = 
0 )  ->  N  =  0 )
2322oveq1d 6016 . . . . . . 7  |-  ( ( ( G  e.  Mnd  /\  ( M  e.  NN0  /\  N  e.  NN0  /\  X  e.  B )
)  /\  N  = 
0 )  ->  ( N  .x.  X )  =  ( 0  .x.  X
) )
248, 19, 9mulg0 13662 . . . . . . . 8  |-  ( X  e.  B  ->  (
0  .x.  X )  =  ( 0g `  G ) )
2516, 24syl 14 . . . . . . 7  |-  ( ( ( G  e.  Mnd  /\  ( M  e.  NN0  /\  N  e.  NN0  /\  X  e.  B )
)  /\  N  = 
0 )  ->  (
0  .x.  X )  =  ( 0g `  G ) )
2623, 25eqtrd 2262 . . . . . 6  |-  ( ( ( G  e.  Mnd  /\  ( M  e.  NN0  /\  N  e.  NN0  /\  X  e.  B )
)  /\  N  = 
0 )  ->  ( N  .x.  X )  =  ( 0g `  G
) )
2726oveq2d 6017 . . . . 5  |-  ( ( ( G  e.  Mnd  /\  ( M  e.  NN0  /\  N  e.  NN0  /\  X  e.  B )
)  /\  N  = 
0 )  ->  (
( M  .x.  X
)  .+  ( N  .x.  X ) )  =  ( ( M  .x.  X )  .+  ( 0g `  G ) ) )
2822oveq2d 6017 . . . . . . 7  |-  ( ( ( G  e.  Mnd  /\  ( M  e.  NN0  /\  N  e.  NN0  /\  X  e.  B )
)  /\  N  = 
0 )  ->  ( M  +  N )  =  ( M  + 
0 ) )
2915nn0cnd 9424 . . . . . . . 8  |-  ( ( ( G  e.  Mnd  /\  ( M  e.  NN0  /\  N  e.  NN0  /\  X  e.  B )
)  /\  N  = 
0 )  ->  M  e.  CC )
3029addridd 8295 . . . . . . 7  |-  ( ( ( G  e.  Mnd  /\  ( M  e.  NN0  /\  N  e.  NN0  /\  X  e.  B )
)  /\  N  = 
0 )  ->  ( M  +  0 )  =  M )
3128, 30eqtrd 2262 . . . . . 6  |-  ( ( ( G  e.  Mnd  /\  ( M  e.  NN0  /\  N  e.  NN0  /\  X  e.  B )
)  /\  N  = 
0 )  ->  ( M  +  N )  =  M )
3231oveq1d 6016 . . . . 5  |-  ( ( ( G  e.  Mnd  /\  ( M  e.  NN0  /\  N  e.  NN0  /\  X  e.  B )
)  /\  N  = 
0 )  ->  (
( M  +  N
)  .x.  X )  =  ( M  .x.  X ) )
3321, 27, 323eqtr4rd 2273 . . . 4  |-  ( ( ( G  e.  Mnd  /\  ( M  e.  NN0  /\  N  e.  NN0  /\  X  e.  B )
)  /\  N  = 
0 )  ->  (
( M  +  N
)  .x.  X )  =  ( ( M 
.x.  X )  .+  ( N  .x.  X ) ) )
3433adantlr 477 . . 3  |-  ( ( ( ( G  e. 
Mnd  /\  ( M  e.  NN0  /\  N  e. 
NN0  /\  X  e.  B ) )  /\  M  e.  NN )  /\  N  =  0
)  ->  ( ( M  +  N )  .x.  X )  =  ( ( M  .x.  X
)  .+  ( N  .x.  X ) ) )
35 simpr2 1028 . . . . 5  |-  ( ( G  e.  Mnd  /\  ( M  e.  NN0  /\  N  e.  NN0  /\  X  e.  B )
)  ->  N  e.  NN0 )
36 elnn0 9371 . . . . 5  |-  ( N  e.  NN0  <->  ( N  e.  NN  \/  N  =  0 ) )
3735, 36sylib 122 . . . 4  |-  ( ( G  e.  Mnd  /\  ( M  e.  NN0  /\  N  e.  NN0  /\  X  e.  B )
)  ->  ( N  e.  NN  \/  N  =  0 ) )
3837adantr 276 . . 3  |-  ( ( ( G  e.  Mnd  /\  ( M  e.  NN0  /\  N  e.  NN0  /\  X  e.  B )
)  /\  M  e.  NN )  ->  ( N  e.  NN  \/  N  =  0 ) )
3912, 34, 38mpjaodan 803 . 2  |-  ( ( ( G  e.  Mnd  /\  ( M  e.  NN0  /\  N  e.  NN0  /\  X  e.  B )
)  /\  M  e.  NN )  ->  ( ( M  +  N ) 
.x.  X )  =  ( ( M  .x.  X )  .+  ( N  .x.  X ) ) )
40 simpll 527 . . . 4  |-  ( ( ( G  e.  Mnd  /\  ( M  e.  NN0  /\  N  e.  NN0  /\  X  e.  B )
)  /\  M  = 
0 )  ->  G  e.  Mnd )
41 simplr2 1064 . . . . 5  |-  ( ( ( G  e.  Mnd  /\  ( M  e.  NN0  /\  N  e.  NN0  /\  X  e.  B )
)  /\  M  = 
0 )  ->  N  e.  NN0 )
42 simplr3 1065 . . . . 5  |-  ( ( ( G  e.  Mnd  /\  ( M  e.  NN0  /\  N  e.  NN0  /\  X  e.  B )
)  /\  M  = 
0 )  ->  X  e.  B )
438, 9mulgnn0cl 13675 . . . . 5  |-  ( ( G  e.  Mnd  /\  N  e.  NN0  /\  X  e.  B )  ->  ( N  .x.  X )  e.  B )
4440, 41, 42, 43syl3anc 1271 . . . 4  |-  ( ( ( G  e.  Mnd  /\  ( M  e.  NN0  /\  N  e.  NN0  /\  X  e.  B )
)  /\  M  = 
0 )  ->  ( N  .x.  X )  e.  B )
458, 10, 19mndlid 13468 . . . 4  |-  ( ( G  e.  Mnd  /\  ( N  .x.  X )  e.  B )  -> 
( ( 0g `  G )  .+  ( N  .x.  X ) )  =  ( N  .x.  X ) )
4640, 44, 45syl2anc 411 . . 3  |-  ( ( ( G  e.  Mnd  /\  ( M  e.  NN0  /\  N  e.  NN0  /\  X  e.  B )
)  /\  M  = 
0 )  ->  (
( 0g `  G
)  .+  ( N  .x.  X ) )  =  ( N  .x.  X
) )
47 simpr 110 . . . . . 6  |-  ( ( ( G  e.  Mnd  /\  ( M  e.  NN0  /\  N  e.  NN0  /\  X  e.  B )
)  /\  M  = 
0 )  ->  M  =  0 )
4847oveq1d 6016 . . . . 5  |-  ( ( ( G  e.  Mnd  /\  ( M  e.  NN0  /\  N  e.  NN0  /\  X  e.  B )
)  /\  M  = 
0 )  ->  ( M  .x.  X )  =  ( 0  .x.  X
) )
4942, 24syl 14 . . . . 5  |-  ( ( ( G  e.  Mnd  /\  ( M  e.  NN0  /\  N  e.  NN0  /\  X  e.  B )
)  /\  M  = 
0 )  ->  (
0  .x.  X )  =  ( 0g `  G ) )
5048, 49eqtrd 2262 . . . 4  |-  ( ( ( G  e.  Mnd  /\  ( M  e.  NN0  /\  N  e.  NN0  /\  X  e.  B )
)  /\  M  = 
0 )  ->  ( M  .x.  X )  =  ( 0g `  G
) )
5150oveq1d 6016 . . 3  |-  ( ( ( G  e.  Mnd  /\  ( M  e.  NN0  /\  N  e.  NN0  /\  X  e.  B )
)  /\  M  = 
0 )  ->  (
( M  .x.  X
)  .+  ( N  .x.  X ) )  =  ( ( 0g `  G )  .+  ( N  .x.  X ) ) )
5247oveq1d 6016 . . . . 5  |-  ( ( ( G  e.  Mnd  /\  ( M  e.  NN0  /\  N  e.  NN0  /\  X  e.  B )
)  /\  M  = 
0 )  ->  ( M  +  N )  =  ( 0  +  N ) )
5341nn0cnd 9424 . . . . . 6  |-  ( ( ( G  e.  Mnd  /\  ( M  e.  NN0  /\  N  e.  NN0  /\  X  e.  B )
)  /\  M  = 
0 )  ->  N  e.  CC )
5453addlidd 8296 . . . . 5  |-  ( ( ( G  e.  Mnd  /\  ( M  e.  NN0  /\  N  e.  NN0  /\  X  e.  B )
)  /\  M  = 
0 )  ->  (
0  +  N )  =  N )
5552, 54eqtrd 2262 . . . 4  |-  ( ( ( G  e.  Mnd  /\  ( M  e.  NN0  /\  N  e.  NN0  /\  X  e.  B )
)  /\  M  = 
0 )  ->  ( M  +  N )  =  N )
5655oveq1d 6016 . . 3  |-  ( ( ( G  e.  Mnd  /\  ( M  e.  NN0  /\  N  e.  NN0  /\  X  e.  B )
)  /\  M  = 
0 )  ->  (
( M  +  N
)  .x.  X )  =  ( N  .x.  X ) )
5746, 51, 563eqtr4rd 2273 . 2  |-  ( ( ( G  e.  Mnd  /\  ( M  e.  NN0  /\  N  e.  NN0  /\  X  e.  B )
)  /\  M  = 
0 )  ->  (
( M  +  N
)  .x.  X )  =  ( ( M 
.x.  X )  .+  ( N  .x.  X ) ) )
58 elnn0 9371 . . 3  |-  ( M  e.  NN0  <->  ( M  e.  NN  \/  M  =  0 ) )
5914, 58sylib 122 . 2  |-  ( ( G  e.  Mnd  /\  ( M  e.  NN0  /\  N  e.  NN0  /\  X  e.  B )
)  ->  ( M  e.  NN  \/  M  =  0 ) )
6039, 57, 59mpjaodan 803 1  |-  ( ( G  e.  Mnd  /\  ( M  e.  NN0  /\  N  e.  NN0  /\  X  e.  B )
)  ->  ( ( M  +  N )  .x.  X )  =  ( ( M  .x.  X
)  .+  ( N  .x.  X ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    \/ wo 713    /\ w3a 1002    = wceq 1395    e. wcel 2200   ` cfv 5318  (class class class)co 6001   0cc0 7999    + caddc 8002   NNcn 9110   NN0cn0 9369   Basecbs 13032   +g cplusg 13110   0gc0g 13289  Smgrpcsgrp 13434   Mndcmnd 13449  .gcmg 13656
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-addcom 8099  ax-addass 8101  ax-distr 8103  ax-i2m1 8104  ax-0lt1 8105  ax-0id 8107  ax-rnegex 8108  ax-cnre 8110  ax-pre-ltirr 8111  ax-pre-ltwlin 8112  ax-pre-lttrn 8113  ax-pre-ltadd 8115
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-iord 4457  df-on 4459  df-ilim 4460  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-1st 6286  df-2nd 6287  df-recs 6451  df-frec 6537  df-pnf 8183  df-mnf 8184  df-xr 8185  df-ltxr 8186  df-le 8187  df-sub 8319  df-neg 8320  df-inn 9111  df-2 9169  df-n0 9370  df-z 9447  df-uz 9723  df-fz 10205  df-seqfrec 10670  df-ndx 13035  df-slot 13036  df-base 13038  df-plusg 13123  df-0g 13291  df-mgm 13389  df-sgrp 13435  df-mnd 13450  df-minusg 13537  df-mulg 13657
This theorem is referenced by:  mulgdirlem  13690
  Copyright terms: Public domain W3C validator