ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulgnn0dir Unicode version

Theorem mulgnn0dir 12868
Description: Sum of group multiples, generalized to  NN0. (Contributed by Mario Carneiro, 11-Dec-2014.)
Hypotheses
Ref Expression
mulgnndir.b  |-  B  =  ( Base `  G
)
mulgnndir.t  |-  .x.  =  (.g
`  G )
mulgnndir.p  |-  .+  =  ( +g  `  G )
Assertion
Ref Expression
mulgnn0dir  |-  ( ( G  e.  Mnd  /\  ( M  e.  NN0  /\  N  e.  NN0  /\  X  e.  B )
)  ->  ( ( M  +  N )  .x.  X )  =  ( ( M  .x.  X
)  .+  ( N  .x.  X ) ) )

Proof of Theorem mulgnn0dir
StepHypRef Expression
1 mndsgrp 12684 . . . . . 6  |-  ( G  e.  Mnd  ->  G  e. Smgrp )
21adantr 276 . . . . 5  |-  ( ( G  e.  Mnd  /\  ( M  e.  NN0  /\  N  e.  NN0  /\  X  e.  B )
)  ->  G  e. Smgrp )
32ad2antrr 488 . . . 4  |-  ( ( ( ( G  e. 
Mnd  /\  ( M  e.  NN0  /\  N  e. 
NN0  /\  X  e.  B ) )  /\  M  e.  NN )  /\  N  e.  NN )  ->  G  e. Smgrp )
4 simplr 528 . . . 4  |-  ( ( ( ( G  e. 
Mnd  /\  ( M  e.  NN0  /\  N  e. 
NN0  /\  X  e.  B ) )  /\  M  e.  NN )  /\  N  e.  NN )  ->  M  e.  NN )
5 simpr 110 . . . 4  |-  ( ( ( ( G  e. 
Mnd  /\  ( M  e.  NN0  /\  N  e. 
NN0  /\  X  e.  B ) )  /\  M  e.  NN )  /\  N  e.  NN )  ->  N  e.  NN )
6 simpr3 1003 . . . . 5  |-  ( ( G  e.  Mnd  /\  ( M  e.  NN0  /\  N  e.  NN0  /\  X  e.  B )
)  ->  X  e.  B )
76ad2antrr 488 . . . 4  |-  ( ( ( ( G  e. 
Mnd  /\  ( M  e.  NN0  /\  N  e. 
NN0  /\  X  e.  B ) )  /\  M  e.  NN )  /\  N  e.  NN )  ->  X  e.  B
)
8 mulgnndir.b . . . . 5  |-  B  =  ( Base `  G
)
9 mulgnndir.t . . . . 5  |-  .x.  =  (.g
`  G )
10 mulgnndir.p . . . . 5  |-  .+  =  ( +g  `  G )
118, 9, 10mulgnndir 12867 . . . 4  |-  ( ( G  e. Smgrp  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B ) )  -> 
( ( M  +  N )  .x.  X
)  =  ( ( M  .x.  X ) 
.+  ( N  .x.  X ) ) )
123, 4, 5, 7, 11syl13anc 1238 . . 3  |-  ( ( ( ( G  e. 
Mnd  /\  ( M  e.  NN0  /\  N  e. 
NN0  /\  X  e.  B ) )  /\  M  e.  NN )  /\  N  e.  NN )  ->  ( ( M  +  N )  .x.  X )  =  ( ( M  .x.  X
)  .+  ( N  .x.  X ) ) )
13 simpll 527 . . . . . 6  |-  ( ( ( G  e.  Mnd  /\  ( M  e.  NN0  /\  N  e.  NN0  /\  X  e.  B )
)  /\  N  = 
0 )  ->  G  e.  Mnd )
14 simpr1 1001 . . . . . . . 8  |-  ( ( G  e.  Mnd  /\  ( M  e.  NN0  /\  N  e.  NN0  /\  X  e.  B )
)  ->  M  e.  NN0 )
1514adantr 276 . . . . . . 7  |-  ( ( ( G  e.  Mnd  /\  ( M  e.  NN0  /\  N  e.  NN0  /\  X  e.  B )
)  /\  N  = 
0 )  ->  M  e.  NN0 )
16 simplr3 1039 . . . . . . 7  |-  ( ( ( G  e.  Mnd  /\  ( M  e.  NN0  /\  N  e.  NN0  /\  X  e.  B )
)  /\  N  = 
0 )  ->  X  e.  B )
178, 9mulgnn0cl 12855 . . . . . . 7  |-  ( ( G  e.  Mnd  /\  M  e.  NN0  /\  X  e.  B )  ->  ( M  .x.  X )  e.  B )
1813, 15, 16, 17syl3anc 1236 . . . . . 6  |-  ( ( ( G  e.  Mnd  /\  ( M  e.  NN0  /\  N  e.  NN0  /\  X  e.  B )
)  /\  N  = 
0 )  ->  ( M  .x.  X )  e.  B )
19 eqid 2173 . . . . . . 7  |-  ( 0g
`  G )  =  ( 0g `  G
)
208, 10, 19mndrid 12699 . . . . . 6  |-  ( ( G  e.  Mnd  /\  ( M  .x.  X )  e.  B )  -> 
( ( M  .x.  X )  .+  ( 0g `  G ) )  =  ( M  .x.  X ) )
2113, 18, 20syl2anc 411 . . . . 5  |-  ( ( ( G  e.  Mnd  /\  ( M  e.  NN0  /\  N  e.  NN0  /\  X  e.  B )
)  /\  N  = 
0 )  ->  (
( M  .x.  X
)  .+  ( 0g `  G ) )  =  ( M  .x.  X
) )
22 simpr 110 . . . . . . . 8  |-  ( ( ( G  e.  Mnd  /\  ( M  e.  NN0  /\  N  e.  NN0  /\  X  e.  B )
)  /\  N  = 
0 )  ->  N  =  0 )
2322oveq1d 5877 . . . . . . 7  |-  ( ( ( G  e.  Mnd  /\  ( M  e.  NN0  /\  N  e.  NN0  /\  X  e.  B )
)  /\  N  = 
0 )  ->  ( N  .x.  X )  =  ( 0  .x.  X
) )
248, 19, 9mulg0 12844 . . . . . . . 8  |-  ( X  e.  B  ->  (
0  .x.  X )  =  ( 0g `  G ) )
2516, 24syl 14 . . . . . . 7  |-  ( ( ( G  e.  Mnd  /\  ( M  e.  NN0  /\  N  e.  NN0  /\  X  e.  B )
)  /\  N  = 
0 )  ->  (
0  .x.  X )  =  ( 0g `  G ) )
2623, 25eqtrd 2206 . . . . . 6  |-  ( ( ( G  e.  Mnd  /\  ( M  e.  NN0  /\  N  e.  NN0  /\  X  e.  B )
)  /\  N  = 
0 )  ->  ( N  .x.  X )  =  ( 0g `  G
) )
2726oveq2d 5878 . . . . 5  |-  ( ( ( G  e.  Mnd  /\  ( M  e.  NN0  /\  N  e.  NN0  /\  X  e.  B )
)  /\  N  = 
0 )  ->  (
( M  .x.  X
)  .+  ( N  .x.  X ) )  =  ( ( M  .x.  X )  .+  ( 0g `  G ) ) )
2822oveq2d 5878 . . . . . . 7  |-  ( ( ( G  e.  Mnd  /\  ( M  e.  NN0  /\  N  e.  NN0  /\  X  e.  B )
)  /\  N  = 
0 )  ->  ( M  +  N )  =  ( M  + 
0 ) )
2915nn0cnd 9199 . . . . . . . 8  |-  ( ( ( G  e.  Mnd  /\  ( M  e.  NN0  /\  N  e.  NN0  /\  X  e.  B )
)  /\  N  = 
0 )  ->  M  e.  CC )
3029addid1d 8077 . . . . . . 7  |-  ( ( ( G  e.  Mnd  /\  ( M  e.  NN0  /\  N  e.  NN0  /\  X  e.  B )
)  /\  N  = 
0 )  ->  ( M  +  0 )  =  M )
3128, 30eqtrd 2206 . . . . . 6  |-  ( ( ( G  e.  Mnd  /\  ( M  e.  NN0  /\  N  e.  NN0  /\  X  e.  B )
)  /\  N  = 
0 )  ->  ( M  +  N )  =  M )
3231oveq1d 5877 . . . . 5  |-  ( ( ( G  e.  Mnd  /\  ( M  e.  NN0  /\  N  e.  NN0  /\  X  e.  B )
)  /\  N  = 
0 )  ->  (
( M  +  N
)  .x.  X )  =  ( M  .x.  X ) )
3321, 27, 323eqtr4rd 2217 . . . 4  |-  ( ( ( G  e.  Mnd  /\  ( M  e.  NN0  /\  N  e.  NN0  /\  X  e.  B )
)  /\  N  = 
0 )  ->  (
( M  +  N
)  .x.  X )  =  ( ( M 
.x.  X )  .+  ( N  .x.  X ) ) )
3433adantlr 477 . . 3  |-  ( ( ( ( G  e. 
Mnd  /\  ( M  e.  NN0  /\  N  e. 
NN0  /\  X  e.  B ) )  /\  M  e.  NN )  /\  N  =  0
)  ->  ( ( M  +  N )  .x.  X )  =  ( ( M  .x.  X
)  .+  ( N  .x.  X ) ) )
35 simpr2 1002 . . . . 5  |-  ( ( G  e.  Mnd  /\  ( M  e.  NN0  /\  N  e.  NN0  /\  X  e.  B )
)  ->  N  e.  NN0 )
36 elnn0 9146 . . . . 5  |-  ( N  e.  NN0  <->  ( N  e.  NN  \/  N  =  0 ) )
3735, 36sylib 122 . . . 4  |-  ( ( G  e.  Mnd  /\  ( M  e.  NN0  /\  N  e.  NN0  /\  X  e.  B )
)  ->  ( N  e.  NN  \/  N  =  0 ) )
3837adantr 276 . . 3  |-  ( ( ( G  e.  Mnd  /\  ( M  e.  NN0  /\  N  e.  NN0  /\  X  e.  B )
)  /\  M  e.  NN )  ->  ( N  e.  NN  \/  N  =  0 ) )
3912, 34, 38mpjaodan 796 . 2  |-  ( ( ( G  e.  Mnd  /\  ( M  e.  NN0  /\  N  e.  NN0  /\  X  e.  B )
)  /\  M  e.  NN )  ->  ( ( M  +  N ) 
.x.  X )  =  ( ( M  .x.  X )  .+  ( N  .x.  X ) ) )
40 simpll 527 . . . 4  |-  ( ( ( G  e.  Mnd  /\  ( M  e.  NN0  /\  N  e.  NN0  /\  X  e.  B )
)  /\  M  = 
0 )  ->  G  e.  Mnd )
41 simplr2 1038 . . . . 5  |-  ( ( ( G  e.  Mnd  /\  ( M  e.  NN0  /\  N  e.  NN0  /\  X  e.  B )
)  /\  M  = 
0 )  ->  N  e.  NN0 )
42 simplr3 1039 . . . . 5  |-  ( ( ( G  e.  Mnd  /\  ( M  e.  NN0  /\  N  e.  NN0  /\  X  e.  B )
)  /\  M  = 
0 )  ->  X  e.  B )
438, 9mulgnn0cl 12855 . . . . 5  |-  ( ( G  e.  Mnd  /\  N  e.  NN0  /\  X  e.  B )  ->  ( N  .x.  X )  e.  B )
4440, 41, 42, 43syl3anc 1236 . . . 4  |-  ( ( ( G  e.  Mnd  /\  ( M  e.  NN0  /\  N  e.  NN0  /\  X  e.  B )
)  /\  M  = 
0 )  ->  ( N  .x.  X )  e.  B )
458, 10, 19mndlid 12698 . . . 4  |-  ( ( G  e.  Mnd  /\  ( N  .x.  X )  e.  B )  -> 
( ( 0g `  G )  .+  ( N  .x.  X ) )  =  ( N  .x.  X ) )
4640, 44, 45syl2anc 411 . . 3  |-  ( ( ( G  e.  Mnd  /\  ( M  e.  NN0  /\  N  e.  NN0  /\  X  e.  B )
)  /\  M  = 
0 )  ->  (
( 0g `  G
)  .+  ( N  .x.  X ) )  =  ( N  .x.  X
) )
47 simpr 110 . . . . . 6  |-  ( ( ( G  e.  Mnd  /\  ( M  e.  NN0  /\  N  e.  NN0  /\  X  e.  B )
)  /\  M  = 
0 )  ->  M  =  0 )
4847oveq1d 5877 . . . . 5  |-  ( ( ( G  e.  Mnd  /\  ( M  e.  NN0  /\  N  e.  NN0  /\  X  e.  B )
)  /\  M  = 
0 )  ->  ( M  .x.  X )  =  ( 0  .x.  X
) )
4942, 24syl 14 . . . . 5  |-  ( ( ( G  e.  Mnd  /\  ( M  e.  NN0  /\  N  e.  NN0  /\  X  e.  B )
)  /\  M  = 
0 )  ->  (
0  .x.  X )  =  ( 0g `  G ) )
5048, 49eqtrd 2206 . . . 4  |-  ( ( ( G  e.  Mnd  /\  ( M  e.  NN0  /\  N  e.  NN0  /\  X  e.  B )
)  /\  M  = 
0 )  ->  ( M  .x.  X )  =  ( 0g `  G
) )
5150oveq1d 5877 . . 3  |-  ( ( ( G  e.  Mnd  /\  ( M  e.  NN0  /\  N  e.  NN0  /\  X  e.  B )
)  /\  M  = 
0 )  ->  (
( M  .x.  X
)  .+  ( N  .x.  X ) )  =  ( ( 0g `  G )  .+  ( N  .x.  X ) ) )
5247oveq1d 5877 . . . . 5  |-  ( ( ( G  e.  Mnd  /\  ( M  e.  NN0  /\  N  e.  NN0  /\  X  e.  B )
)  /\  M  = 
0 )  ->  ( M  +  N )  =  ( 0  +  N ) )
5341nn0cnd 9199 . . . . . 6  |-  ( ( ( G  e.  Mnd  /\  ( M  e.  NN0  /\  N  e.  NN0  /\  X  e.  B )
)  /\  M  = 
0 )  ->  N  e.  CC )
5453addid2d 8078 . . . . 5  |-  ( ( ( G  e.  Mnd  /\  ( M  e.  NN0  /\  N  e.  NN0  /\  X  e.  B )
)  /\  M  = 
0 )  ->  (
0  +  N )  =  N )
5552, 54eqtrd 2206 . . . 4  |-  ( ( ( G  e.  Mnd  /\  ( M  e.  NN0  /\  N  e.  NN0  /\  X  e.  B )
)  /\  M  = 
0 )  ->  ( M  +  N )  =  N )
5655oveq1d 5877 . . 3  |-  ( ( ( G  e.  Mnd  /\  ( M  e.  NN0  /\  N  e.  NN0  /\  X  e.  B )
)  /\  M  = 
0 )  ->  (
( M  +  N
)  .x.  X )  =  ( N  .x.  X ) )
5746, 51, 563eqtr4rd 2217 . 2  |-  ( ( ( G  e.  Mnd  /\  ( M  e.  NN0  /\  N  e.  NN0  /\  X  e.  B )
)  /\  M  = 
0 )  ->  (
( M  +  N
)  .x.  X )  =  ( ( M 
.x.  X )  .+  ( N  .x.  X ) ) )
58 elnn0 9146 . . 3  |-  ( M  e.  NN0  <->  ( M  e.  NN  \/  M  =  0 ) )
5914, 58sylib 122 . 2  |-  ( ( G  e.  Mnd  /\  ( M  e.  NN0  /\  N  e.  NN0  /\  X  e.  B )
)  ->  ( M  e.  NN  \/  M  =  0 ) )
6039, 57, 59mpjaodan 796 1  |-  ( ( G  e.  Mnd  /\  ( M  e.  NN0  /\  N  e.  NN0  /\  X  e.  B )
)  ->  ( ( M  +  N )  .x.  X )  =  ( ( M  .x.  X
)  .+  ( N  .x.  X ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    \/ wo 706    /\ w3a 976    = wceq 1351    e. wcel 2144   ` cfv 5205  (class class class)co 5862   0cc0 7783    + caddc 7786   NNcn 8887   NN0cn0 9144   Basecbs 12425   +g cplusg 12489   0gc0g 12623  Smgrpcsgrp 12669   Mndcmnd 12679  .gcmg 12839
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 612  ax-in2 613  ax-io 707  ax-5 1443  ax-7 1444  ax-gen 1445  ax-ie1 1489  ax-ie2 1490  ax-8 1500  ax-10 1501  ax-11 1502  ax-i12 1503  ax-bndl 1505  ax-4 1506  ax-17 1522  ax-i9 1526  ax-ial 1530  ax-i5r 1531  ax-13 2146  ax-14 2147  ax-ext 2155  ax-coll 4110  ax-sep 4113  ax-nul 4121  ax-pow 4166  ax-pr 4200  ax-un 4424  ax-setind 4527  ax-iinf 4578  ax-cnex 7874  ax-resscn 7875  ax-1cn 7876  ax-1re 7877  ax-icn 7878  ax-addcl 7879  ax-addrcl 7880  ax-mulcl 7881  ax-addcom 7883  ax-addass 7885  ax-distr 7887  ax-i2m1 7888  ax-0lt1 7889  ax-0id 7891  ax-rnegex 7892  ax-cnre 7894  ax-pre-ltirr 7895  ax-pre-ltwlin 7896  ax-pre-lttrn 7897  ax-pre-ltadd 7899
This theorem depends on definitions:  df-bi 117  df-dc 833  df-3or 977  df-3an 978  df-tru 1354  df-fal 1357  df-nf 1457  df-sb 1759  df-eu 2025  df-mo 2026  df-clab 2160  df-cleq 2166  df-clel 2169  df-nfc 2304  df-ne 2344  df-nel 2439  df-ral 2456  df-rex 2457  df-reu 2458  df-rmo 2459  df-rab 2460  df-v 2735  df-sbc 2959  df-csb 3053  df-dif 3126  df-un 3128  df-in 3130  df-ss 3137  df-nul 3418  df-if 3530  df-pw 3571  df-sn 3592  df-pr 3593  df-op 3595  df-uni 3803  df-int 3838  df-iun 3881  df-br 3996  df-opab 4057  df-mpt 4058  df-tr 4094  df-id 4284  df-iord 4357  df-on 4359  df-ilim 4360  df-suc 4362  df-iom 4581  df-xp 4623  df-rel 4624  df-cnv 4625  df-co 4626  df-dm 4627  df-rn 4628  df-res 4629  df-ima 4630  df-iota 5167  df-fun 5207  df-fn 5208  df-f 5209  df-f1 5210  df-fo 5211  df-f1o 5212  df-fv 5213  df-riota 5818  df-ov 5865  df-oprab 5866  df-mpo 5867  df-1st 6128  df-2nd 6129  df-recs 6293  df-frec 6379  df-pnf 7965  df-mnf 7966  df-xr 7967  df-ltxr 7968  df-le 7969  df-sub 8101  df-neg 8102  df-inn 8888  df-2 8946  df-n0 9145  df-z 9222  df-uz 9497  df-fz 9975  df-seqfrec 10411  df-ndx 12428  df-slot 12429  df-base 12431  df-plusg 12502  df-0g 12625  df-mgm 12637  df-sgrp 12670  df-mnd 12680  df-minusg 12739  df-mulg 12840
This theorem is referenced by:  mulgdirlem  12869
  Copyright terms: Public domain W3C validator