ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulgnn0dir Unicode version

Theorem mulgnn0dir 13023
Description: Sum of group multiples, generalized to  NN0. (Contributed by Mario Carneiro, 11-Dec-2014.)
Hypotheses
Ref Expression
mulgnndir.b  |-  B  =  ( Base `  G
)
mulgnndir.t  |-  .x.  =  (.g
`  G )
mulgnndir.p  |-  .+  =  ( +g  `  G )
Assertion
Ref Expression
mulgnn0dir  |-  ( ( G  e.  Mnd  /\  ( M  e.  NN0  /\  N  e.  NN0  /\  X  e.  B )
)  ->  ( ( M  +  N )  .x.  X )  =  ( ( M  .x.  X
)  .+  ( N  .x.  X ) ) )

Proof of Theorem mulgnn0dir
StepHypRef Expression
1 mndsgrp 12829 . . . . . 6  |-  ( G  e.  Mnd  ->  G  e. Smgrp )
21adantr 276 . . . . 5  |-  ( ( G  e.  Mnd  /\  ( M  e.  NN0  /\  N  e.  NN0  /\  X  e.  B )
)  ->  G  e. Smgrp )
32ad2antrr 488 . . . 4  |-  ( ( ( ( G  e. 
Mnd  /\  ( M  e.  NN0  /\  N  e. 
NN0  /\  X  e.  B ) )  /\  M  e.  NN )  /\  N  e.  NN )  ->  G  e. Smgrp )
4 simplr 528 . . . 4  |-  ( ( ( ( G  e. 
Mnd  /\  ( M  e.  NN0  /\  N  e. 
NN0  /\  X  e.  B ) )  /\  M  e.  NN )  /\  N  e.  NN )  ->  M  e.  NN )
5 simpr 110 . . . 4  |-  ( ( ( ( G  e. 
Mnd  /\  ( M  e.  NN0  /\  N  e. 
NN0  /\  X  e.  B ) )  /\  M  e.  NN )  /\  N  e.  NN )  ->  N  e.  NN )
6 simpr3 1005 . . . . 5  |-  ( ( G  e.  Mnd  /\  ( M  e.  NN0  /\  N  e.  NN0  /\  X  e.  B )
)  ->  X  e.  B )
76ad2antrr 488 . . . 4  |-  ( ( ( ( G  e. 
Mnd  /\  ( M  e.  NN0  /\  N  e. 
NN0  /\  X  e.  B ) )  /\  M  e.  NN )  /\  N  e.  NN )  ->  X  e.  B
)
8 mulgnndir.b . . . . 5  |-  B  =  ( Base `  G
)
9 mulgnndir.t . . . . 5  |-  .x.  =  (.g
`  G )
10 mulgnndir.p . . . . 5  |-  .+  =  ( +g  `  G )
118, 9, 10mulgnndir 13022 . . . 4  |-  ( ( G  e. Smgrp  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B ) )  -> 
( ( M  +  N )  .x.  X
)  =  ( ( M  .x.  X ) 
.+  ( N  .x.  X ) ) )
123, 4, 5, 7, 11syl13anc 1240 . . 3  |-  ( ( ( ( G  e. 
Mnd  /\  ( M  e.  NN0  /\  N  e. 
NN0  /\  X  e.  B ) )  /\  M  e.  NN )  /\  N  e.  NN )  ->  ( ( M  +  N )  .x.  X )  =  ( ( M  .x.  X
)  .+  ( N  .x.  X ) ) )
13 simpll 527 . . . . . 6  |-  ( ( ( G  e.  Mnd  /\  ( M  e.  NN0  /\  N  e.  NN0  /\  X  e.  B )
)  /\  N  = 
0 )  ->  G  e.  Mnd )
14 simpr1 1003 . . . . . . . 8  |-  ( ( G  e.  Mnd  /\  ( M  e.  NN0  /\  N  e.  NN0  /\  X  e.  B )
)  ->  M  e.  NN0 )
1514adantr 276 . . . . . . 7  |-  ( ( ( G  e.  Mnd  /\  ( M  e.  NN0  /\  N  e.  NN0  /\  X  e.  B )
)  /\  N  = 
0 )  ->  M  e.  NN0 )
16 simplr3 1041 . . . . . . 7  |-  ( ( ( G  e.  Mnd  /\  ( M  e.  NN0  /\  N  e.  NN0  /\  X  e.  B )
)  /\  N  = 
0 )  ->  X  e.  B )
178, 9mulgnn0cl 13009 . . . . . . 7  |-  ( ( G  e.  Mnd  /\  M  e.  NN0  /\  X  e.  B )  ->  ( M  .x.  X )  e.  B )
1813, 15, 16, 17syl3anc 1238 . . . . . 6  |-  ( ( ( G  e.  Mnd  /\  ( M  e.  NN0  /\  N  e.  NN0  /\  X  e.  B )
)  /\  N  = 
0 )  ->  ( M  .x.  X )  e.  B )
19 eqid 2177 . . . . . . 7  |-  ( 0g
`  G )  =  ( 0g `  G
)
208, 10, 19mndrid 12844 . . . . . 6  |-  ( ( G  e.  Mnd  /\  ( M  .x.  X )  e.  B )  -> 
( ( M  .x.  X )  .+  ( 0g `  G ) )  =  ( M  .x.  X ) )
2113, 18, 20syl2anc 411 . . . . 5  |-  ( ( ( G  e.  Mnd  /\  ( M  e.  NN0  /\  N  e.  NN0  /\  X  e.  B )
)  /\  N  = 
0 )  ->  (
( M  .x.  X
)  .+  ( 0g `  G ) )  =  ( M  .x.  X
) )
22 simpr 110 . . . . . . . 8  |-  ( ( ( G  e.  Mnd  /\  ( M  e.  NN0  /\  N  e.  NN0  /\  X  e.  B )
)  /\  N  = 
0 )  ->  N  =  0 )
2322oveq1d 5893 . . . . . . 7  |-  ( ( ( G  e.  Mnd  /\  ( M  e.  NN0  /\  N  e.  NN0  /\  X  e.  B )
)  /\  N  = 
0 )  ->  ( N  .x.  X )  =  ( 0  .x.  X
) )
248, 19, 9mulg0 12998 . . . . . . . 8  |-  ( X  e.  B  ->  (
0  .x.  X )  =  ( 0g `  G ) )
2516, 24syl 14 . . . . . . 7  |-  ( ( ( G  e.  Mnd  /\  ( M  e.  NN0  /\  N  e.  NN0  /\  X  e.  B )
)  /\  N  = 
0 )  ->  (
0  .x.  X )  =  ( 0g `  G ) )
2623, 25eqtrd 2210 . . . . . 6  |-  ( ( ( G  e.  Mnd  /\  ( M  e.  NN0  /\  N  e.  NN0  /\  X  e.  B )
)  /\  N  = 
0 )  ->  ( N  .x.  X )  =  ( 0g `  G
) )
2726oveq2d 5894 . . . . 5  |-  ( ( ( G  e.  Mnd  /\  ( M  e.  NN0  /\  N  e.  NN0  /\  X  e.  B )
)  /\  N  = 
0 )  ->  (
( M  .x.  X
)  .+  ( N  .x.  X ) )  =  ( ( M  .x.  X )  .+  ( 0g `  G ) ) )
2822oveq2d 5894 . . . . . . 7  |-  ( ( ( G  e.  Mnd  /\  ( M  e.  NN0  /\  N  e.  NN0  /\  X  e.  B )
)  /\  N  = 
0 )  ->  ( M  +  N )  =  ( M  + 
0 ) )
2915nn0cnd 9234 . . . . . . . 8  |-  ( ( ( G  e.  Mnd  /\  ( M  e.  NN0  /\  N  e.  NN0  /\  X  e.  B )
)  /\  N  = 
0 )  ->  M  e.  CC )
3029addid1d 8109 . . . . . . 7  |-  ( ( ( G  e.  Mnd  /\  ( M  e.  NN0  /\  N  e.  NN0  /\  X  e.  B )
)  /\  N  = 
0 )  ->  ( M  +  0 )  =  M )
3128, 30eqtrd 2210 . . . . . 6  |-  ( ( ( G  e.  Mnd  /\  ( M  e.  NN0  /\  N  e.  NN0  /\  X  e.  B )
)  /\  N  = 
0 )  ->  ( M  +  N )  =  M )
3231oveq1d 5893 . . . . 5  |-  ( ( ( G  e.  Mnd  /\  ( M  e.  NN0  /\  N  e.  NN0  /\  X  e.  B )
)  /\  N  = 
0 )  ->  (
( M  +  N
)  .x.  X )  =  ( M  .x.  X ) )
3321, 27, 323eqtr4rd 2221 . . . 4  |-  ( ( ( G  e.  Mnd  /\  ( M  e.  NN0  /\  N  e.  NN0  /\  X  e.  B )
)  /\  N  = 
0 )  ->  (
( M  +  N
)  .x.  X )  =  ( ( M 
.x.  X )  .+  ( N  .x.  X ) ) )
3433adantlr 477 . . 3  |-  ( ( ( ( G  e. 
Mnd  /\  ( M  e.  NN0  /\  N  e. 
NN0  /\  X  e.  B ) )  /\  M  e.  NN )  /\  N  =  0
)  ->  ( ( M  +  N )  .x.  X )  =  ( ( M  .x.  X
)  .+  ( N  .x.  X ) ) )
35 simpr2 1004 . . . . 5  |-  ( ( G  e.  Mnd  /\  ( M  e.  NN0  /\  N  e.  NN0  /\  X  e.  B )
)  ->  N  e.  NN0 )
36 elnn0 9181 . . . . 5  |-  ( N  e.  NN0  <->  ( N  e.  NN  \/  N  =  0 ) )
3735, 36sylib 122 . . . 4  |-  ( ( G  e.  Mnd  /\  ( M  e.  NN0  /\  N  e.  NN0  /\  X  e.  B )
)  ->  ( N  e.  NN  \/  N  =  0 ) )
3837adantr 276 . . 3  |-  ( ( ( G  e.  Mnd  /\  ( M  e.  NN0  /\  N  e.  NN0  /\  X  e.  B )
)  /\  M  e.  NN )  ->  ( N  e.  NN  \/  N  =  0 ) )
3912, 34, 38mpjaodan 798 . 2  |-  ( ( ( G  e.  Mnd  /\  ( M  e.  NN0  /\  N  e.  NN0  /\  X  e.  B )
)  /\  M  e.  NN )  ->  ( ( M  +  N ) 
.x.  X )  =  ( ( M  .x.  X )  .+  ( N  .x.  X ) ) )
40 simpll 527 . . . 4  |-  ( ( ( G  e.  Mnd  /\  ( M  e.  NN0  /\  N  e.  NN0  /\  X  e.  B )
)  /\  M  = 
0 )  ->  G  e.  Mnd )
41 simplr2 1040 . . . . 5  |-  ( ( ( G  e.  Mnd  /\  ( M  e.  NN0  /\  N  e.  NN0  /\  X  e.  B )
)  /\  M  = 
0 )  ->  N  e.  NN0 )
42 simplr3 1041 . . . . 5  |-  ( ( ( G  e.  Mnd  /\  ( M  e.  NN0  /\  N  e.  NN0  /\  X  e.  B )
)  /\  M  = 
0 )  ->  X  e.  B )
438, 9mulgnn0cl 13009 . . . . 5  |-  ( ( G  e.  Mnd  /\  N  e.  NN0  /\  X  e.  B )  ->  ( N  .x.  X )  e.  B )
4440, 41, 42, 43syl3anc 1238 . . . 4  |-  ( ( ( G  e.  Mnd  /\  ( M  e.  NN0  /\  N  e.  NN0  /\  X  e.  B )
)  /\  M  = 
0 )  ->  ( N  .x.  X )  e.  B )
458, 10, 19mndlid 12843 . . . 4  |-  ( ( G  e.  Mnd  /\  ( N  .x.  X )  e.  B )  -> 
( ( 0g `  G )  .+  ( N  .x.  X ) )  =  ( N  .x.  X ) )
4640, 44, 45syl2anc 411 . . 3  |-  ( ( ( G  e.  Mnd  /\  ( M  e.  NN0  /\  N  e.  NN0  /\  X  e.  B )
)  /\  M  = 
0 )  ->  (
( 0g `  G
)  .+  ( N  .x.  X ) )  =  ( N  .x.  X
) )
47 simpr 110 . . . . . 6  |-  ( ( ( G  e.  Mnd  /\  ( M  e.  NN0  /\  N  e.  NN0  /\  X  e.  B )
)  /\  M  = 
0 )  ->  M  =  0 )
4847oveq1d 5893 . . . . 5  |-  ( ( ( G  e.  Mnd  /\  ( M  e.  NN0  /\  N  e.  NN0  /\  X  e.  B )
)  /\  M  = 
0 )  ->  ( M  .x.  X )  =  ( 0  .x.  X
) )
4942, 24syl 14 . . . . 5  |-  ( ( ( G  e.  Mnd  /\  ( M  e.  NN0  /\  N  e.  NN0  /\  X  e.  B )
)  /\  M  = 
0 )  ->  (
0  .x.  X )  =  ( 0g `  G ) )
5048, 49eqtrd 2210 . . . 4  |-  ( ( ( G  e.  Mnd  /\  ( M  e.  NN0  /\  N  e.  NN0  /\  X  e.  B )
)  /\  M  = 
0 )  ->  ( M  .x.  X )  =  ( 0g `  G
) )
5150oveq1d 5893 . . 3  |-  ( ( ( G  e.  Mnd  /\  ( M  e.  NN0  /\  N  e.  NN0  /\  X  e.  B )
)  /\  M  = 
0 )  ->  (
( M  .x.  X
)  .+  ( N  .x.  X ) )  =  ( ( 0g `  G )  .+  ( N  .x.  X ) ) )
5247oveq1d 5893 . . . . 5  |-  ( ( ( G  e.  Mnd  /\  ( M  e.  NN0  /\  N  e.  NN0  /\  X  e.  B )
)  /\  M  = 
0 )  ->  ( M  +  N )  =  ( 0  +  N ) )
5341nn0cnd 9234 . . . . . 6  |-  ( ( ( G  e.  Mnd  /\  ( M  e.  NN0  /\  N  e.  NN0  /\  X  e.  B )
)  /\  M  = 
0 )  ->  N  e.  CC )
5453addid2d 8110 . . . . 5  |-  ( ( ( G  e.  Mnd  /\  ( M  e.  NN0  /\  N  e.  NN0  /\  X  e.  B )
)  /\  M  = 
0 )  ->  (
0  +  N )  =  N )
5552, 54eqtrd 2210 . . . 4  |-  ( ( ( G  e.  Mnd  /\  ( M  e.  NN0  /\  N  e.  NN0  /\  X  e.  B )
)  /\  M  = 
0 )  ->  ( M  +  N )  =  N )
5655oveq1d 5893 . . 3  |-  ( ( ( G  e.  Mnd  /\  ( M  e.  NN0  /\  N  e.  NN0  /\  X  e.  B )
)  /\  M  = 
0 )  ->  (
( M  +  N
)  .x.  X )  =  ( N  .x.  X ) )
5746, 51, 563eqtr4rd 2221 . 2  |-  ( ( ( G  e.  Mnd  /\  ( M  e.  NN0  /\  N  e.  NN0  /\  X  e.  B )
)  /\  M  = 
0 )  ->  (
( M  +  N
)  .x.  X )  =  ( ( M 
.x.  X )  .+  ( N  .x.  X ) ) )
58 elnn0 9181 . . 3  |-  ( M  e.  NN0  <->  ( M  e.  NN  \/  M  =  0 ) )
5914, 58sylib 122 . 2  |-  ( ( G  e.  Mnd  /\  ( M  e.  NN0  /\  N  e.  NN0  /\  X  e.  B )
)  ->  ( M  e.  NN  \/  M  =  0 ) )
6039, 57, 59mpjaodan 798 1  |-  ( ( G  e.  Mnd  /\  ( M  e.  NN0  /\  N  e.  NN0  /\  X  e.  B )
)  ->  ( ( M  +  N )  .x.  X )  =  ( ( M  .x.  X
)  .+  ( N  .x.  X ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    \/ wo 708    /\ w3a 978    = wceq 1353    e. wcel 2148   ` cfv 5218  (class class class)co 5878   0cc0 7814    + caddc 7817   NNcn 8922   NN0cn0 9179   Basecbs 12465   +g cplusg 12539   0gc0g 12711  Smgrpcsgrp 12814   Mndcmnd 12824  .gcmg 12992
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-iinf 4589  ax-cnex 7905  ax-resscn 7906  ax-1cn 7907  ax-1re 7908  ax-icn 7909  ax-addcl 7910  ax-addrcl 7911  ax-mulcl 7912  ax-addcom 7914  ax-addass 7916  ax-distr 7918  ax-i2m1 7919  ax-0lt1 7920  ax-0id 7922  ax-rnegex 7923  ax-cnre 7925  ax-pre-ltirr 7926  ax-pre-ltwlin 7927  ax-pre-lttrn 7928  ax-pre-ltadd 7930
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-if 3537  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-tr 4104  df-id 4295  df-iord 4368  df-on 4370  df-ilim 4371  df-suc 4373  df-iom 4592  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-riota 5834  df-ov 5881  df-oprab 5882  df-mpo 5883  df-1st 6144  df-2nd 6145  df-recs 6309  df-frec 6395  df-pnf 7997  df-mnf 7998  df-xr 7999  df-ltxr 8000  df-le 8001  df-sub 8133  df-neg 8134  df-inn 8923  df-2 8981  df-n0 9180  df-z 9257  df-uz 9532  df-fz 10012  df-seqfrec 10449  df-ndx 12468  df-slot 12469  df-base 12471  df-plusg 12552  df-0g 12713  df-mgm 12782  df-sgrp 12815  df-mnd 12825  df-minusg 12888  df-mulg 12993
This theorem is referenced by:  mulgdirlem  13024
  Copyright terms: Public domain W3C validator