ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resqrexlemdecn Unicode version

Theorem resqrexlemdecn 11177
Description: Lemma for resqrex 11191. The sequence is decreasing. (Contributed by Jim Kingdon, 31-Jul-2021.)
Hypotheses
Ref Expression
resqrexlemex.seq  |-  F  =  seq 1 ( ( y  e.  RR+ ,  z  e.  RR+  |->  ( ( y  +  ( A  /  y ) )  /  2 ) ) ,  ( NN  X.  { ( 1  +  A ) } ) )
resqrexlemex.a  |-  ( ph  ->  A  e.  RR )
resqrexlemex.agt0  |-  ( ph  ->  0  <_  A )
resqrexlemdecn.n  |-  ( ph  ->  N  e.  NN )
resqrexlemdecn.m  |-  ( ph  ->  M  e.  NN )
resqrexlemdecn.nm  |-  ( ph  ->  N  <  M )
Assertion
Ref Expression
resqrexlemdecn  |-  ( ph  ->  ( F `  M
)  <  ( F `  N ) )
Distinct variable groups:    y, A, z    ph, y, z
Allowed substitution hints:    F( y, z)    M( y, z)    N( y, z)

Proof of Theorem resqrexlemdecn
Dummy variables  k  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 resqrexlemdecn.n . . . . 5  |-  ( ph  ->  N  e.  NN )
21nnzd 9447 . . . 4  |-  ( ph  ->  N  e.  ZZ )
32peano2zd 9451 . . 3  |-  ( ph  ->  ( N  +  1 )  e.  ZZ )
4 resqrexlemdecn.m . . . 4  |-  ( ph  ->  M  e.  NN )
54nnzd 9447 . . 3  |-  ( ph  ->  M  e.  ZZ )
6 resqrexlemdecn.nm . . . 4  |-  ( ph  ->  N  <  M )
7 nnltp1le 9386 . . . . 5  |-  ( ( N  e.  NN  /\  M  e.  NN )  ->  ( N  <  M  <->  ( N  +  1 )  <_  M ) )
81, 4, 7syl2anc 411 . . . 4  |-  ( ph  ->  ( N  <  M  <->  ( N  +  1 )  <_  M ) )
96, 8mpbid 147 . . 3  |-  ( ph  ->  ( N  +  1 )  <_  M )
10 fveq2 5558 . . . . . 6  |-  ( w  =  ( N  + 
1 )  ->  ( F `  w )  =  ( F `  ( N  +  1
) ) )
1110breq1d 4043 . . . . 5  |-  ( w  =  ( N  + 
1 )  ->  (
( F `  w
)  <  ( F `  N )  <->  ( F `  ( N  +  1 ) )  <  ( F `  N )
) )
1211imbi2d 230 . . . 4  |-  ( w  =  ( N  + 
1 )  ->  (
( ph  ->  ( F `
 w )  < 
( F `  N
) )  <->  ( ph  ->  ( F `  ( N  +  1 ) )  <  ( F `
 N ) ) ) )
13 fveq2 5558 . . . . . 6  |-  ( w  =  k  ->  ( F `  w )  =  ( F `  k ) )
1413breq1d 4043 . . . . 5  |-  ( w  =  k  ->  (
( F `  w
)  <  ( F `  N )  <->  ( F `  k )  <  ( F `  N )
) )
1514imbi2d 230 . . . 4  |-  ( w  =  k  ->  (
( ph  ->  ( F `
 w )  < 
( F `  N
) )  <->  ( ph  ->  ( F `  k
)  <  ( F `  N ) ) ) )
16 fveq2 5558 . . . . . 6  |-  ( w  =  ( k  +  1 )  ->  ( F `  w )  =  ( F `  ( k  +  1 ) ) )
1716breq1d 4043 . . . . 5  |-  ( w  =  ( k  +  1 )  ->  (
( F `  w
)  <  ( F `  N )  <->  ( F `  ( k  +  1 ) )  <  ( F `  N )
) )
1817imbi2d 230 . . . 4  |-  ( w  =  ( k  +  1 )  ->  (
( ph  ->  ( F `
 w )  < 
( F `  N
) )  <->  ( ph  ->  ( F `  (
k  +  1 ) )  <  ( F `
 N ) ) ) )
19 fveq2 5558 . . . . . 6  |-  ( w  =  M  ->  ( F `  w )  =  ( F `  M ) )
2019breq1d 4043 . . . . 5  |-  ( w  =  M  ->  (
( F `  w
)  <  ( F `  N )  <->  ( F `  M )  <  ( F `  N )
) )
2120imbi2d 230 . . . 4  |-  ( w  =  M  ->  (
( ph  ->  ( F `
 w )  < 
( F `  N
) )  <->  ( ph  ->  ( F `  M
)  <  ( F `  N ) ) ) )
22 resqrexlemex.seq . . . . . . 7  |-  F  =  seq 1 ( ( y  e.  RR+ ,  z  e.  RR+  |->  ( ( y  +  ( A  /  y ) )  /  2 ) ) ,  ( NN  X.  { ( 1  +  A ) } ) )
23 resqrexlemex.a . . . . . . 7  |-  ( ph  ->  A  e.  RR )
24 resqrexlemex.agt0 . . . . . . 7  |-  ( ph  ->  0  <_  A )
2522, 23, 24resqrexlemdec 11176 . . . . . 6  |-  ( (
ph  /\  N  e.  NN )  ->  ( F `
 ( N  + 
1 ) )  < 
( F `  N
) )
261, 25mpdan 421 . . . . 5  |-  ( ph  ->  ( F `  ( N  +  1 ) )  <  ( F `
 N ) )
2726a1i 9 . . . 4  |-  ( ( N  +  1 )  e.  ZZ  ->  ( ph  ->  ( F `  ( N  +  1
) )  <  ( F `  N )
) )
2822, 23, 24resqrexlemf 11172 . . . . . . . . . . 11  |-  ( ph  ->  F : NN --> RR+ )
2928ad2antrr 488 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
( N  +  1 )  e.  ZZ  /\  k  e.  ZZ  /\  ( N  +  1 )  <_  k ) )  /\  ( F `  k )  <  ( F `  N )
)  ->  F : NN
--> RR+ )
30 simplr2 1042 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
( N  +  1 )  e.  ZZ  /\  k  e.  ZZ  /\  ( N  +  1 )  <_  k ) )  /\  ( F `  k )  <  ( F `  N )
)  ->  k  e.  ZZ )
31 1red 8041 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
( N  +  1 )  e.  ZZ  /\  k  e.  ZZ  /\  ( N  +  1 )  <_  k ) )  /\  ( F `  k )  <  ( F `  N )
)  ->  1  e.  RR )
323ad2antrr 488 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
( N  +  1 )  e.  ZZ  /\  k  e.  ZZ  /\  ( N  +  1 )  <_  k ) )  /\  ( F `  k )  <  ( F `  N )
)  ->  ( N  +  1 )  e.  ZZ )
3332zred 9448 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
( N  +  1 )  e.  ZZ  /\  k  e.  ZZ  /\  ( N  +  1 )  <_  k ) )  /\  ( F `  k )  <  ( F `  N )
)  ->  ( N  +  1 )  e.  RR )
3430zred 9448 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
( N  +  1 )  e.  ZZ  /\  k  e.  ZZ  /\  ( N  +  1 )  <_  k ) )  /\  ( F `  k )  <  ( F `  N )
)  ->  k  e.  RR )
351nnred 9003 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  N  e.  RR )
361nngt0d 9034 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  0  <  N )
37 0re 8026 . . . . . . . . . . . . . . . . 17  |-  0  e.  RR
38 ltle 8114 . . . . . . . . . . . . . . . . 17  |-  ( ( 0  e.  RR  /\  N  e.  RR )  ->  ( 0  <  N  ->  0  <_  N )
)
3937, 38mpan 424 . . . . . . . . . . . . . . . 16  |-  ( N  e.  RR  ->  (
0  <  N  ->  0  <_  N ) )
4035, 36, 39sylc 62 . . . . . . . . . . . . . . 15  |-  ( ph  ->  0  <_  N )
41 1red 8041 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  1  e.  RR )
4241, 35addge02d 8561 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( 0  <_  N  <->  1  <_  ( N  + 
1 ) ) )
4340, 42mpbid 147 . . . . . . . . . . . . . 14  |-  ( ph  ->  1  <_  ( N  +  1 ) )
4443ad2antrr 488 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
( N  +  1 )  e.  ZZ  /\  k  e.  ZZ  /\  ( N  +  1 )  <_  k ) )  /\  ( F `  k )  <  ( F `  N )
)  ->  1  <_  ( N  +  1 ) )
45 simplr3 1043 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
( N  +  1 )  e.  ZZ  /\  k  e.  ZZ  /\  ( N  +  1 )  <_  k ) )  /\  ( F `  k )  <  ( F `  N )
)  ->  ( N  +  1 )  <_ 
k )
4631, 33, 34, 44, 45letrd 8150 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
( N  +  1 )  e.  ZZ  /\  k  e.  ZZ  /\  ( N  +  1 )  <_  k ) )  /\  ( F `  k )  <  ( F `  N )
)  ->  1  <_  k )
47 elnnz1 9349 . . . . . . . . . . . 12  |-  ( k  e.  NN  <->  ( k  e.  ZZ  /\  1  <_ 
k ) )
4830, 46, 47sylanbrc 417 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
( N  +  1 )  e.  ZZ  /\  k  e.  ZZ  /\  ( N  +  1 )  <_  k ) )  /\  ( F `  k )  <  ( F `  N )
)  ->  k  e.  NN )
4948peano2nnd 9005 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
( N  +  1 )  e.  ZZ  /\  k  e.  ZZ  /\  ( N  +  1 )  <_  k ) )  /\  ( F `  k )  <  ( F `  N )
)  ->  ( k  +  1 )  e.  NN )
5029, 49ffvelcdmd 5698 . . . . . . . . 9  |-  ( ( ( ph  /\  (
( N  +  1 )  e.  ZZ  /\  k  e.  ZZ  /\  ( N  +  1 )  <_  k ) )  /\  ( F `  k )  <  ( F `  N )
)  ->  ( F `  ( k  +  1 ) )  e.  RR+ )
5150rpred 9771 . . . . . . . 8  |-  ( ( ( ph  /\  (
( N  +  1 )  e.  ZZ  /\  k  e.  ZZ  /\  ( N  +  1 )  <_  k ) )  /\  ( F `  k )  <  ( F `  N )
)  ->  ( F `  ( k  +  1 ) )  e.  RR )
5229, 48ffvelcdmd 5698 . . . . . . . . 9  |-  ( ( ( ph  /\  (
( N  +  1 )  e.  ZZ  /\  k  e.  ZZ  /\  ( N  +  1 )  <_  k ) )  /\  ( F `  k )  <  ( F `  N )
)  ->  ( F `  k )  e.  RR+ )
5352rpred 9771 . . . . . . . 8  |-  ( ( ( ph  /\  (
( N  +  1 )  e.  ZZ  /\  k  e.  ZZ  /\  ( N  +  1 )  <_  k ) )  /\  ( F `  k )  <  ( F `  N )
)  ->  ( F `  k )  e.  RR )
541ad2antrr 488 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
( N  +  1 )  e.  ZZ  /\  k  e.  ZZ  /\  ( N  +  1 )  <_  k ) )  /\  ( F `  k )  <  ( F `  N )
)  ->  N  e.  NN )
5529, 54ffvelcdmd 5698 . . . . . . . . 9  |-  ( ( ( ph  /\  (
( N  +  1 )  e.  ZZ  /\  k  e.  ZZ  /\  ( N  +  1 )  <_  k ) )  /\  ( F `  k )  <  ( F `  N )
)  ->  ( F `  N )  e.  RR+ )
5655rpred 9771 . . . . . . . 8  |-  ( ( ( ph  /\  (
( N  +  1 )  e.  ZZ  /\  k  e.  ZZ  /\  ( N  +  1 )  <_  k ) )  /\  ( F `  k )  <  ( F `  N )
)  ->  ( F `  N )  e.  RR )
57 simpll 527 . . . . . . . . 9  |-  ( ( ( ph  /\  (
( N  +  1 )  e.  ZZ  /\  k  e.  ZZ  /\  ( N  +  1 )  <_  k ) )  /\  ( F `  k )  <  ( F `  N )
)  ->  ph )
5822, 23, 24resqrexlemdec 11176 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  NN )  ->  ( F `
 ( k  +  1 ) )  < 
( F `  k
) )
5957, 48, 58syl2anc 411 . . . . . . . 8  |-  ( ( ( ph  /\  (
( N  +  1 )  e.  ZZ  /\  k  e.  ZZ  /\  ( N  +  1 )  <_  k ) )  /\  ( F `  k )  <  ( F `  N )
)  ->  ( F `  ( k  +  1 ) )  <  ( F `  k )
)
60 simpr 110 . . . . . . . 8  |-  ( ( ( ph  /\  (
( N  +  1 )  e.  ZZ  /\  k  e.  ZZ  /\  ( N  +  1 )  <_  k ) )  /\  ( F `  k )  <  ( F `  N )
)  ->  ( F `  k )  <  ( F `  N )
)
6151, 53, 56, 59, 60lttrd 8152 . . . . . . 7  |-  ( ( ( ph  /\  (
( N  +  1 )  e.  ZZ  /\  k  e.  ZZ  /\  ( N  +  1 )  <_  k ) )  /\  ( F `  k )  <  ( F `  N )
)  ->  ( F `  ( k  +  1 ) )  <  ( F `  N )
)
6261ex 115 . . . . . 6  |-  ( (
ph  /\  ( ( N  +  1 )  e.  ZZ  /\  k  e.  ZZ  /\  ( N  +  1 )  <_ 
k ) )  -> 
( ( F `  k )  <  ( F `  N )  ->  ( F `  (
k  +  1 ) )  <  ( F `
 N ) ) )
6362expcom 116 . . . . 5  |-  ( ( ( N  +  1 )  e.  ZZ  /\  k  e.  ZZ  /\  ( N  +  1 )  <_  k )  -> 
( ph  ->  ( ( F `  k )  <  ( F `  N )  ->  ( F `  ( k  +  1 ) )  <  ( F `  N ) ) ) )
6463a2d 26 . . . 4  |-  ( ( ( N  +  1 )  e.  ZZ  /\  k  e.  ZZ  /\  ( N  +  1 )  <_  k )  -> 
( ( ph  ->  ( F `  k )  <  ( F `  N ) )  -> 
( ph  ->  ( F `
 ( k  +  1 ) )  < 
( F `  N
) ) ) )
6512, 15, 18, 21, 27, 64uzind 9437 . . 3  |-  ( ( ( N  +  1 )  e.  ZZ  /\  M  e.  ZZ  /\  ( N  +  1 )  <_  M )  -> 
( ph  ->  ( F `
 M )  < 
( F `  N
) ) )
663, 5, 9, 65syl3anc 1249 . 2  |-  ( ph  ->  ( ph  ->  ( F `  M )  <  ( F `  N
) ) )
6766pm2.43i 49 1  |-  ( ph  ->  ( F `  M
)  <  ( F `  N ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1364    e. wcel 2167   {csn 3622   class class class wbr 4033    X. cxp 4661   -->wf 5254   ` cfv 5258  (class class class)co 5922    e. cmpo 5924   RRcr 7878   0cc0 7879   1c1 7880    + caddc 7882    < clt 8061    <_ cle 8062    / cdiv 8699   NNcn 8990   2c2 9041   ZZcz 9326   RR+crp 9728    seqcseq 10539
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996  ax-pre-mulext 7997
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-po 4331  df-iso 4332  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-frec 6449  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-reap 8602  df-ap 8609  df-div 8700  df-inn 8991  df-2 9049  df-3 9050  df-4 9051  df-n0 9250  df-z 9327  df-uz 9602  df-rp 9729  df-seqfrec 10540  df-exp 10631
This theorem is referenced by:  resqrexlemnm  11183  resqrexlemcvg  11184  resqrexlemoverl  11186  resqrexlemglsq  11187
  Copyright terms: Public domain W3C validator