ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resqrexlemdecn Unicode version

Theorem resqrexlemdecn 10976
Description: Lemma for resqrex 10990. The sequence is decreasing. (Contributed by Jim Kingdon, 31-Jul-2021.)
Hypotheses
Ref Expression
resqrexlemex.seq  |-  F  =  seq 1 ( ( y  e.  RR+ ,  z  e.  RR+  |->  ( ( y  +  ( A  /  y ) )  /  2 ) ) ,  ( NN  X.  { ( 1  +  A ) } ) )
resqrexlemex.a  |-  ( ph  ->  A  e.  RR )
resqrexlemex.agt0  |-  ( ph  ->  0  <_  A )
resqrexlemdecn.n  |-  ( ph  ->  N  e.  NN )
resqrexlemdecn.m  |-  ( ph  ->  M  e.  NN )
resqrexlemdecn.nm  |-  ( ph  ->  N  <  M )
Assertion
Ref Expression
resqrexlemdecn  |-  ( ph  ->  ( F `  M
)  <  ( F `  N ) )
Distinct variable groups:    y, A, z    ph, y, z
Allowed substitution hints:    F( y, z)    M( y, z)    N( y, z)

Proof of Theorem resqrexlemdecn
Dummy variables  k  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 resqrexlemdecn.n . . . . 5  |-  ( ph  ->  N  e.  NN )
21nnzd 9333 . . . 4  |-  ( ph  ->  N  e.  ZZ )
32peano2zd 9337 . . 3  |-  ( ph  ->  ( N  +  1 )  e.  ZZ )
4 resqrexlemdecn.m . . . 4  |-  ( ph  ->  M  e.  NN )
54nnzd 9333 . . 3  |-  ( ph  ->  M  e.  ZZ )
6 resqrexlemdecn.nm . . . 4  |-  ( ph  ->  N  <  M )
7 nnltp1le 9272 . . . . 5  |-  ( ( N  e.  NN  /\  M  e.  NN )  ->  ( N  <  M  <->  ( N  +  1 )  <_  M ) )
81, 4, 7syl2anc 409 . . . 4  |-  ( ph  ->  ( N  <  M  <->  ( N  +  1 )  <_  M ) )
96, 8mpbid 146 . . 3  |-  ( ph  ->  ( N  +  1 )  <_  M )
10 fveq2 5496 . . . . . 6  |-  ( w  =  ( N  + 
1 )  ->  ( F `  w )  =  ( F `  ( N  +  1
) ) )
1110breq1d 3999 . . . . 5  |-  ( w  =  ( N  + 
1 )  ->  (
( F `  w
)  <  ( F `  N )  <->  ( F `  ( N  +  1 ) )  <  ( F `  N )
) )
1211imbi2d 229 . . . 4  |-  ( w  =  ( N  + 
1 )  ->  (
( ph  ->  ( F `
 w )  < 
( F `  N
) )  <->  ( ph  ->  ( F `  ( N  +  1 ) )  <  ( F `
 N ) ) ) )
13 fveq2 5496 . . . . . 6  |-  ( w  =  k  ->  ( F `  w )  =  ( F `  k ) )
1413breq1d 3999 . . . . 5  |-  ( w  =  k  ->  (
( F `  w
)  <  ( F `  N )  <->  ( F `  k )  <  ( F `  N )
) )
1514imbi2d 229 . . . 4  |-  ( w  =  k  ->  (
( ph  ->  ( F `
 w )  < 
( F `  N
) )  <->  ( ph  ->  ( F `  k
)  <  ( F `  N ) ) ) )
16 fveq2 5496 . . . . . 6  |-  ( w  =  ( k  +  1 )  ->  ( F `  w )  =  ( F `  ( k  +  1 ) ) )
1716breq1d 3999 . . . . 5  |-  ( w  =  ( k  +  1 )  ->  (
( F `  w
)  <  ( F `  N )  <->  ( F `  ( k  +  1 ) )  <  ( F `  N )
) )
1817imbi2d 229 . . . 4  |-  ( w  =  ( k  +  1 )  ->  (
( ph  ->  ( F `
 w )  < 
( F `  N
) )  <->  ( ph  ->  ( F `  (
k  +  1 ) )  <  ( F `
 N ) ) ) )
19 fveq2 5496 . . . . . 6  |-  ( w  =  M  ->  ( F `  w )  =  ( F `  M ) )
2019breq1d 3999 . . . . 5  |-  ( w  =  M  ->  (
( F `  w
)  <  ( F `  N )  <->  ( F `  M )  <  ( F `  N )
) )
2120imbi2d 229 . . . 4  |-  ( w  =  M  ->  (
( ph  ->  ( F `
 w )  < 
( F `  N
) )  <->  ( ph  ->  ( F `  M
)  <  ( F `  N ) ) ) )
22 resqrexlemex.seq . . . . . . 7  |-  F  =  seq 1 ( ( y  e.  RR+ ,  z  e.  RR+  |->  ( ( y  +  ( A  /  y ) )  /  2 ) ) ,  ( NN  X.  { ( 1  +  A ) } ) )
23 resqrexlemex.a . . . . . . 7  |-  ( ph  ->  A  e.  RR )
24 resqrexlemex.agt0 . . . . . . 7  |-  ( ph  ->  0  <_  A )
2522, 23, 24resqrexlemdec 10975 . . . . . 6  |-  ( (
ph  /\  N  e.  NN )  ->  ( F `
 ( N  + 
1 ) )  < 
( F `  N
) )
261, 25mpdan 419 . . . . 5  |-  ( ph  ->  ( F `  ( N  +  1 ) )  <  ( F `
 N ) )
2726a1i 9 . . . 4  |-  ( ( N  +  1 )  e.  ZZ  ->  ( ph  ->  ( F `  ( N  +  1
) )  <  ( F `  N )
) )
2822, 23, 24resqrexlemf 10971 . . . . . . . . . . 11  |-  ( ph  ->  F : NN --> RR+ )
2928ad2antrr 485 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
( N  +  1 )  e.  ZZ  /\  k  e.  ZZ  /\  ( N  +  1 )  <_  k ) )  /\  ( F `  k )  <  ( F `  N )
)  ->  F : NN
--> RR+ )
30 simplr2 1035 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
( N  +  1 )  e.  ZZ  /\  k  e.  ZZ  /\  ( N  +  1 )  <_  k ) )  /\  ( F `  k )  <  ( F `  N )
)  ->  k  e.  ZZ )
31 1red 7935 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
( N  +  1 )  e.  ZZ  /\  k  e.  ZZ  /\  ( N  +  1 )  <_  k ) )  /\  ( F `  k )  <  ( F `  N )
)  ->  1  e.  RR )
323ad2antrr 485 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
( N  +  1 )  e.  ZZ  /\  k  e.  ZZ  /\  ( N  +  1 )  <_  k ) )  /\  ( F `  k )  <  ( F `  N )
)  ->  ( N  +  1 )  e.  ZZ )
3332zred 9334 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
( N  +  1 )  e.  ZZ  /\  k  e.  ZZ  /\  ( N  +  1 )  <_  k ) )  /\  ( F `  k )  <  ( F `  N )
)  ->  ( N  +  1 )  e.  RR )
3430zred 9334 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
( N  +  1 )  e.  ZZ  /\  k  e.  ZZ  /\  ( N  +  1 )  <_  k ) )  /\  ( F `  k )  <  ( F `  N )
)  ->  k  e.  RR )
351nnred 8891 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  N  e.  RR )
361nngt0d 8922 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  0  <  N )
37 0re 7920 . . . . . . . . . . . . . . . . 17  |-  0  e.  RR
38 ltle 8007 . . . . . . . . . . . . . . . . 17  |-  ( ( 0  e.  RR  /\  N  e.  RR )  ->  ( 0  <  N  ->  0  <_  N )
)
3937, 38mpan 422 . . . . . . . . . . . . . . . 16  |-  ( N  e.  RR  ->  (
0  <  N  ->  0  <_  N ) )
4035, 36, 39sylc 62 . . . . . . . . . . . . . . 15  |-  ( ph  ->  0  <_  N )
41 1red 7935 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  1  e.  RR )
4241, 35addge02d 8453 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( 0  <_  N  <->  1  <_  ( N  + 
1 ) ) )
4340, 42mpbid 146 . . . . . . . . . . . . . 14  |-  ( ph  ->  1  <_  ( N  +  1 ) )
4443ad2antrr 485 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
( N  +  1 )  e.  ZZ  /\  k  e.  ZZ  /\  ( N  +  1 )  <_  k ) )  /\  ( F `  k )  <  ( F `  N )
)  ->  1  <_  ( N  +  1 ) )
45 simplr3 1036 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
( N  +  1 )  e.  ZZ  /\  k  e.  ZZ  /\  ( N  +  1 )  <_  k ) )  /\  ( F `  k )  <  ( F `  N )
)  ->  ( N  +  1 )  <_ 
k )
4631, 33, 34, 44, 45letrd 8043 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
( N  +  1 )  e.  ZZ  /\  k  e.  ZZ  /\  ( N  +  1 )  <_  k ) )  /\  ( F `  k )  <  ( F `  N )
)  ->  1  <_  k )
47 elnnz1 9235 . . . . . . . . . . . 12  |-  ( k  e.  NN  <->  ( k  e.  ZZ  /\  1  <_ 
k ) )
4830, 46, 47sylanbrc 415 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
( N  +  1 )  e.  ZZ  /\  k  e.  ZZ  /\  ( N  +  1 )  <_  k ) )  /\  ( F `  k )  <  ( F `  N )
)  ->  k  e.  NN )
4948peano2nnd 8893 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
( N  +  1 )  e.  ZZ  /\  k  e.  ZZ  /\  ( N  +  1 )  <_  k ) )  /\  ( F `  k )  <  ( F `  N )
)  ->  ( k  +  1 )  e.  NN )
5029, 49ffvelrnd 5632 . . . . . . . . 9  |-  ( ( ( ph  /\  (
( N  +  1 )  e.  ZZ  /\  k  e.  ZZ  /\  ( N  +  1 )  <_  k ) )  /\  ( F `  k )  <  ( F `  N )
)  ->  ( F `  ( k  +  1 ) )  e.  RR+ )
5150rpred 9653 . . . . . . . 8  |-  ( ( ( ph  /\  (
( N  +  1 )  e.  ZZ  /\  k  e.  ZZ  /\  ( N  +  1 )  <_  k ) )  /\  ( F `  k )  <  ( F `  N )
)  ->  ( F `  ( k  +  1 ) )  e.  RR )
5229, 48ffvelrnd 5632 . . . . . . . . 9  |-  ( ( ( ph  /\  (
( N  +  1 )  e.  ZZ  /\  k  e.  ZZ  /\  ( N  +  1 )  <_  k ) )  /\  ( F `  k )  <  ( F `  N )
)  ->  ( F `  k )  e.  RR+ )
5352rpred 9653 . . . . . . . 8  |-  ( ( ( ph  /\  (
( N  +  1 )  e.  ZZ  /\  k  e.  ZZ  /\  ( N  +  1 )  <_  k ) )  /\  ( F `  k )  <  ( F `  N )
)  ->  ( F `  k )  e.  RR )
541ad2antrr 485 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
( N  +  1 )  e.  ZZ  /\  k  e.  ZZ  /\  ( N  +  1 )  <_  k ) )  /\  ( F `  k )  <  ( F `  N )
)  ->  N  e.  NN )
5529, 54ffvelrnd 5632 . . . . . . . . 9  |-  ( ( ( ph  /\  (
( N  +  1 )  e.  ZZ  /\  k  e.  ZZ  /\  ( N  +  1 )  <_  k ) )  /\  ( F `  k )  <  ( F `  N )
)  ->  ( F `  N )  e.  RR+ )
5655rpred 9653 . . . . . . . 8  |-  ( ( ( ph  /\  (
( N  +  1 )  e.  ZZ  /\  k  e.  ZZ  /\  ( N  +  1 )  <_  k ) )  /\  ( F `  k )  <  ( F `  N )
)  ->  ( F `  N )  e.  RR )
57 simpll 524 . . . . . . . . 9  |-  ( ( ( ph  /\  (
( N  +  1 )  e.  ZZ  /\  k  e.  ZZ  /\  ( N  +  1 )  <_  k ) )  /\  ( F `  k )  <  ( F `  N )
)  ->  ph )
5822, 23, 24resqrexlemdec 10975 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  NN )  ->  ( F `
 ( k  +  1 ) )  < 
( F `  k
) )
5957, 48, 58syl2anc 409 . . . . . . . 8  |-  ( ( ( ph  /\  (
( N  +  1 )  e.  ZZ  /\  k  e.  ZZ  /\  ( N  +  1 )  <_  k ) )  /\  ( F `  k )  <  ( F `  N )
)  ->  ( F `  ( k  +  1 ) )  <  ( F `  k )
)
60 simpr 109 . . . . . . . 8  |-  ( ( ( ph  /\  (
( N  +  1 )  e.  ZZ  /\  k  e.  ZZ  /\  ( N  +  1 )  <_  k ) )  /\  ( F `  k )  <  ( F `  N )
)  ->  ( F `  k )  <  ( F `  N )
)
6151, 53, 56, 59, 60lttrd 8045 . . . . . . 7  |-  ( ( ( ph  /\  (
( N  +  1 )  e.  ZZ  /\  k  e.  ZZ  /\  ( N  +  1 )  <_  k ) )  /\  ( F `  k )  <  ( F `  N )
)  ->  ( F `  ( k  +  1 ) )  <  ( F `  N )
)
6261ex 114 . . . . . 6  |-  ( (
ph  /\  ( ( N  +  1 )  e.  ZZ  /\  k  e.  ZZ  /\  ( N  +  1 )  <_ 
k ) )  -> 
( ( F `  k )  <  ( F `  N )  ->  ( F `  (
k  +  1 ) )  <  ( F `
 N ) ) )
6362expcom 115 . . . . 5  |-  ( ( ( N  +  1 )  e.  ZZ  /\  k  e.  ZZ  /\  ( N  +  1 )  <_  k )  -> 
( ph  ->  ( ( F `  k )  <  ( F `  N )  ->  ( F `  ( k  +  1 ) )  <  ( F `  N ) ) ) )
6463a2d 26 . . . 4  |-  ( ( ( N  +  1 )  e.  ZZ  /\  k  e.  ZZ  /\  ( N  +  1 )  <_  k )  -> 
( ( ph  ->  ( F `  k )  <  ( F `  N ) )  -> 
( ph  ->  ( F `
 ( k  +  1 ) )  < 
( F `  N
) ) ) )
6512, 15, 18, 21, 27, 64uzind 9323 . . 3  |-  ( ( ( N  +  1 )  e.  ZZ  /\  M  e.  ZZ  /\  ( N  +  1 )  <_  M )  -> 
( ph  ->  ( F `
 M )  < 
( F `  N
) ) )
663, 5, 9, 65syl3anc 1233 . 2  |-  ( ph  ->  ( ph  ->  ( F `  M )  <  ( F `  N
) ) )
6766pm2.43i 49 1  |-  ( ph  ->  ( F `  M
)  <  ( F `  N ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 973    = wceq 1348    e. wcel 2141   {csn 3583   class class class wbr 3989    X. cxp 4609   -->wf 5194   ` cfv 5198  (class class class)co 5853    e. cmpo 5855   RRcr 7773   0cc0 7774   1c1 7775    + caddc 7777    < clt 7954    <_ cle 7955    / cdiv 8589   NNcn 8878   2c2 8929   ZZcz 9212   RR+crp 9610    seqcseq 10401
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-mulrcl 7873  ax-addcom 7874  ax-mulcom 7875  ax-addass 7876  ax-mulass 7877  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-1rid 7881  ax-0id 7882  ax-rnegex 7883  ax-precex 7884  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890  ax-pre-mulgt0 7891  ax-pre-mulext 7892
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-po 4281  df-iso 4282  df-iord 4351  df-on 4353  df-ilim 4354  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-frec 6370  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-reap 8494  df-ap 8501  df-div 8590  df-inn 8879  df-2 8937  df-3 8938  df-4 8939  df-n0 9136  df-z 9213  df-uz 9488  df-rp 9611  df-seqfrec 10402  df-exp 10476
This theorem is referenced by:  resqrexlemnm  10982  resqrexlemcvg  10983  resqrexlemoverl  10985  resqrexlemglsq  10986
  Copyright terms: Public domain W3C validator