| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > resqrexlemdecn | Unicode version | ||
| Description: Lemma for resqrex 11407. The sequence is decreasing. (Contributed by Jim Kingdon, 31-Jul-2021.) |
| Ref | Expression |
|---|---|
| resqrexlemex.seq |
|
| resqrexlemex.a |
|
| resqrexlemex.agt0 |
|
| resqrexlemdecn.n |
|
| resqrexlemdecn.m |
|
| resqrexlemdecn.nm |
|
| Ref | Expression |
|---|---|
| resqrexlemdecn |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resqrexlemdecn.n |
. . . . 5
| |
| 2 | 1 | nnzd 9509 |
. . . 4
|
| 3 | 2 | peano2zd 9513 |
. . 3
|
| 4 | resqrexlemdecn.m |
. . . 4
| |
| 5 | 4 | nnzd 9509 |
. . 3
|
| 6 | resqrexlemdecn.nm |
. . . 4
| |
| 7 | nnltp1le 9448 |
. . . . 5
| |
| 8 | 1, 4, 7 | syl2anc 411 |
. . . 4
|
| 9 | 6, 8 | mpbid 147 |
. . 3
|
| 10 | fveq2 5588 |
. . . . . 6
| |
| 11 | 10 | breq1d 4060 |
. . . . 5
|
| 12 | 11 | imbi2d 230 |
. . . 4
|
| 13 | fveq2 5588 |
. . . . . 6
| |
| 14 | 13 | breq1d 4060 |
. . . . 5
|
| 15 | 14 | imbi2d 230 |
. . . 4
|
| 16 | fveq2 5588 |
. . . . . 6
| |
| 17 | 16 | breq1d 4060 |
. . . . 5
|
| 18 | 17 | imbi2d 230 |
. . . 4
|
| 19 | fveq2 5588 |
. . . . . 6
| |
| 20 | 19 | breq1d 4060 |
. . . . 5
|
| 21 | 20 | imbi2d 230 |
. . . 4
|
| 22 | resqrexlemex.seq |
. . . . . . 7
| |
| 23 | resqrexlemex.a |
. . . . . . 7
| |
| 24 | resqrexlemex.agt0 |
. . . . . . 7
| |
| 25 | 22, 23, 24 | resqrexlemdec 11392 |
. . . . . 6
|
| 26 | 1, 25 | mpdan 421 |
. . . . 5
|
| 27 | 26 | a1i 9 |
. . . 4
|
| 28 | 22, 23, 24 | resqrexlemf 11388 |
. . . . . . . . . . 11
|
| 29 | 28 | ad2antrr 488 |
. . . . . . . . . 10
|
| 30 | simplr2 1043 |
. . . . . . . . . . . 12
| |
| 31 | 1red 8102 |
. . . . . . . . . . . . 13
| |
| 32 | 3 | ad2antrr 488 |
. . . . . . . . . . . . . 14
|
| 33 | 32 | zred 9510 |
. . . . . . . . . . . . 13
|
| 34 | 30 | zred 9510 |
. . . . . . . . . . . . 13
|
| 35 | 1 | nnred 9064 |
. . . . . . . . . . . . . . . 16
|
| 36 | 1 | nngt0d 9095 |
. . . . . . . . . . . . . . . 16
|
| 37 | 0re 8087 |
. . . . . . . . . . . . . . . . 17
| |
| 38 | ltle 8175 |
. . . . . . . . . . . . . . . . 17
| |
| 39 | 37, 38 | mpan 424 |
. . . . . . . . . . . . . . . 16
|
| 40 | 35, 36, 39 | sylc 62 |
. . . . . . . . . . . . . . 15
|
| 41 | 1red 8102 |
. . . . . . . . . . . . . . . 16
| |
| 42 | 41, 35 | addge02d 8622 |
. . . . . . . . . . . . . . 15
|
| 43 | 40, 42 | mpbid 147 |
. . . . . . . . . . . . . 14
|
| 44 | 43 | ad2antrr 488 |
. . . . . . . . . . . . 13
|
| 45 | simplr3 1044 |
. . . . . . . . . . . . 13
| |
| 46 | 31, 33, 34, 44, 45 | letrd 8211 |
. . . . . . . . . . . 12
|
| 47 | elnnz1 9410 |
. . . . . . . . . . . 12
| |
| 48 | 30, 46, 47 | sylanbrc 417 |
. . . . . . . . . . 11
|
| 49 | 48 | peano2nnd 9066 |
. . . . . . . . . 10
|
| 50 | 29, 49 | ffvelcdmd 5728 |
. . . . . . . . 9
|
| 51 | 50 | rpred 9833 |
. . . . . . . 8
|
| 52 | 29, 48 | ffvelcdmd 5728 |
. . . . . . . . 9
|
| 53 | 52 | rpred 9833 |
. . . . . . . 8
|
| 54 | 1 | ad2antrr 488 |
. . . . . . . . . 10
|
| 55 | 29, 54 | ffvelcdmd 5728 |
. . . . . . . . 9
|
| 56 | 55 | rpred 9833 |
. . . . . . . 8
|
| 57 | simpll 527 |
. . . . . . . . 9
| |
| 58 | 22, 23, 24 | resqrexlemdec 11392 |
. . . . . . . . 9
|
| 59 | 57, 48, 58 | syl2anc 411 |
. . . . . . . 8
|
| 60 | simpr 110 |
. . . . . . . 8
| |
| 61 | 51, 53, 56, 59, 60 | lttrd 8213 |
. . . . . . 7
|
| 62 | 61 | ex 115 |
. . . . . 6
|
| 63 | 62 | expcom 116 |
. . . . 5
|
| 64 | 63 | a2d 26 |
. . . 4
|
| 65 | 12, 15, 18, 21, 27, 64 | uzind 9499 |
. . 3
|
| 66 | 3, 5, 9, 65 | syl3anc 1250 |
. 2
|
| 67 | 66 | pm2.43i 49 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4166 ax-sep 4169 ax-nul 4177 ax-pow 4225 ax-pr 4260 ax-un 4487 ax-setind 4592 ax-iinf 4643 ax-cnex 8031 ax-resscn 8032 ax-1cn 8033 ax-1re 8034 ax-icn 8035 ax-addcl 8036 ax-addrcl 8037 ax-mulcl 8038 ax-mulrcl 8039 ax-addcom 8040 ax-mulcom 8041 ax-addass 8042 ax-mulass 8043 ax-distr 8044 ax-i2m1 8045 ax-0lt1 8046 ax-1rid 8047 ax-0id 8048 ax-rnegex 8049 ax-precex 8050 ax-cnre 8051 ax-pre-ltirr 8052 ax-pre-ltwlin 8053 ax-pre-lttrn 8054 ax-pre-apti 8055 ax-pre-ltadd 8056 ax-pre-mulgt0 8057 ax-pre-mulext 8058 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-if 3576 df-pw 3622 df-sn 3643 df-pr 3644 df-op 3646 df-uni 3856 df-int 3891 df-iun 3934 df-br 4051 df-opab 4113 df-mpt 4114 df-tr 4150 df-id 4347 df-po 4350 df-iso 4351 df-iord 4420 df-on 4422 df-ilim 4423 df-suc 4425 df-iom 4646 df-xp 4688 df-rel 4689 df-cnv 4690 df-co 4691 df-dm 4692 df-rn 4693 df-res 4694 df-ima 4695 df-iota 5240 df-fun 5281 df-fn 5282 df-f 5283 df-f1 5284 df-fo 5285 df-f1o 5286 df-fv 5287 df-riota 5911 df-ov 5959 df-oprab 5960 df-mpo 5961 df-1st 6238 df-2nd 6239 df-recs 6403 df-frec 6489 df-pnf 8124 df-mnf 8125 df-xr 8126 df-ltxr 8127 df-le 8128 df-sub 8260 df-neg 8261 df-reap 8663 df-ap 8670 df-div 8761 df-inn 9052 df-2 9110 df-3 9111 df-4 9112 df-n0 9311 df-z 9388 df-uz 9664 df-rp 9791 df-seqfrec 10610 df-exp 10701 |
| This theorem is referenced by: resqrexlemnm 11399 resqrexlemcvg 11400 resqrexlemoverl 11402 resqrexlemglsq 11403 |
| Copyright terms: Public domain | W3C validator |