ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resqrexlemdecn Unicode version

Theorem resqrexlemdecn 11393
Description: Lemma for resqrex 11407. The sequence is decreasing. (Contributed by Jim Kingdon, 31-Jul-2021.)
Hypotheses
Ref Expression
resqrexlemex.seq  |-  F  =  seq 1 ( ( y  e.  RR+ ,  z  e.  RR+  |->  ( ( y  +  ( A  /  y ) )  /  2 ) ) ,  ( NN  X.  { ( 1  +  A ) } ) )
resqrexlemex.a  |-  ( ph  ->  A  e.  RR )
resqrexlemex.agt0  |-  ( ph  ->  0  <_  A )
resqrexlemdecn.n  |-  ( ph  ->  N  e.  NN )
resqrexlemdecn.m  |-  ( ph  ->  M  e.  NN )
resqrexlemdecn.nm  |-  ( ph  ->  N  <  M )
Assertion
Ref Expression
resqrexlemdecn  |-  ( ph  ->  ( F `  M
)  <  ( F `  N ) )
Distinct variable groups:    y, A, z    ph, y, z
Allowed substitution hints:    F( y, z)    M( y, z)    N( y, z)

Proof of Theorem resqrexlemdecn
Dummy variables  k  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 resqrexlemdecn.n . . . . 5  |-  ( ph  ->  N  e.  NN )
21nnzd 9509 . . . 4  |-  ( ph  ->  N  e.  ZZ )
32peano2zd 9513 . . 3  |-  ( ph  ->  ( N  +  1 )  e.  ZZ )
4 resqrexlemdecn.m . . . 4  |-  ( ph  ->  M  e.  NN )
54nnzd 9509 . . 3  |-  ( ph  ->  M  e.  ZZ )
6 resqrexlemdecn.nm . . . 4  |-  ( ph  ->  N  <  M )
7 nnltp1le 9448 . . . . 5  |-  ( ( N  e.  NN  /\  M  e.  NN )  ->  ( N  <  M  <->  ( N  +  1 )  <_  M ) )
81, 4, 7syl2anc 411 . . . 4  |-  ( ph  ->  ( N  <  M  <->  ( N  +  1 )  <_  M ) )
96, 8mpbid 147 . . 3  |-  ( ph  ->  ( N  +  1 )  <_  M )
10 fveq2 5588 . . . . . 6  |-  ( w  =  ( N  + 
1 )  ->  ( F `  w )  =  ( F `  ( N  +  1
) ) )
1110breq1d 4060 . . . . 5  |-  ( w  =  ( N  + 
1 )  ->  (
( F `  w
)  <  ( F `  N )  <->  ( F `  ( N  +  1 ) )  <  ( F `  N )
) )
1211imbi2d 230 . . . 4  |-  ( w  =  ( N  + 
1 )  ->  (
( ph  ->  ( F `
 w )  < 
( F `  N
) )  <->  ( ph  ->  ( F `  ( N  +  1 ) )  <  ( F `
 N ) ) ) )
13 fveq2 5588 . . . . . 6  |-  ( w  =  k  ->  ( F `  w )  =  ( F `  k ) )
1413breq1d 4060 . . . . 5  |-  ( w  =  k  ->  (
( F `  w
)  <  ( F `  N )  <->  ( F `  k )  <  ( F `  N )
) )
1514imbi2d 230 . . . 4  |-  ( w  =  k  ->  (
( ph  ->  ( F `
 w )  < 
( F `  N
) )  <->  ( ph  ->  ( F `  k
)  <  ( F `  N ) ) ) )
16 fveq2 5588 . . . . . 6  |-  ( w  =  ( k  +  1 )  ->  ( F `  w )  =  ( F `  ( k  +  1 ) ) )
1716breq1d 4060 . . . . 5  |-  ( w  =  ( k  +  1 )  ->  (
( F `  w
)  <  ( F `  N )  <->  ( F `  ( k  +  1 ) )  <  ( F `  N )
) )
1817imbi2d 230 . . . 4  |-  ( w  =  ( k  +  1 )  ->  (
( ph  ->  ( F `
 w )  < 
( F `  N
) )  <->  ( ph  ->  ( F `  (
k  +  1 ) )  <  ( F `
 N ) ) ) )
19 fveq2 5588 . . . . . 6  |-  ( w  =  M  ->  ( F `  w )  =  ( F `  M ) )
2019breq1d 4060 . . . . 5  |-  ( w  =  M  ->  (
( F `  w
)  <  ( F `  N )  <->  ( F `  M )  <  ( F `  N )
) )
2120imbi2d 230 . . . 4  |-  ( w  =  M  ->  (
( ph  ->  ( F `
 w )  < 
( F `  N
) )  <->  ( ph  ->  ( F `  M
)  <  ( F `  N ) ) ) )
22 resqrexlemex.seq . . . . . . 7  |-  F  =  seq 1 ( ( y  e.  RR+ ,  z  e.  RR+  |->  ( ( y  +  ( A  /  y ) )  /  2 ) ) ,  ( NN  X.  { ( 1  +  A ) } ) )
23 resqrexlemex.a . . . . . . 7  |-  ( ph  ->  A  e.  RR )
24 resqrexlemex.agt0 . . . . . . 7  |-  ( ph  ->  0  <_  A )
2522, 23, 24resqrexlemdec 11392 . . . . . 6  |-  ( (
ph  /\  N  e.  NN )  ->  ( F `
 ( N  + 
1 ) )  < 
( F `  N
) )
261, 25mpdan 421 . . . . 5  |-  ( ph  ->  ( F `  ( N  +  1 ) )  <  ( F `
 N ) )
2726a1i 9 . . . 4  |-  ( ( N  +  1 )  e.  ZZ  ->  ( ph  ->  ( F `  ( N  +  1
) )  <  ( F `  N )
) )
2822, 23, 24resqrexlemf 11388 . . . . . . . . . . 11  |-  ( ph  ->  F : NN --> RR+ )
2928ad2antrr 488 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
( N  +  1 )  e.  ZZ  /\  k  e.  ZZ  /\  ( N  +  1 )  <_  k ) )  /\  ( F `  k )  <  ( F `  N )
)  ->  F : NN
--> RR+ )
30 simplr2 1043 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
( N  +  1 )  e.  ZZ  /\  k  e.  ZZ  /\  ( N  +  1 )  <_  k ) )  /\  ( F `  k )  <  ( F `  N )
)  ->  k  e.  ZZ )
31 1red 8102 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
( N  +  1 )  e.  ZZ  /\  k  e.  ZZ  /\  ( N  +  1 )  <_  k ) )  /\  ( F `  k )  <  ( F `  N )
)  ->  1  e.  RR )
323ad2antrr 488 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
( N  +  1 )  e.  ZZ  /\  k  e.  ZZ  /\  ( N  +  1 )  <_  k ) )  /\  ( F `  k )  <  ( F `  N )
)  ->  ( N  +  1 )  e.  ZZ )
3332zred 9510 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
( N  +  1 )  e.  ZZ  /\  k  e.  ZZ  /\  ( N  +  1 )  <_  k ) )  /\  ( F `  k )  <  ( F `  N )
)  ->  ( N  +  1 )  e.  RR )
3430zred 9510 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
( N  +  1 )  e.  ZZ  /\  k  e.  ZZ  /\  ( N  +  1 )  <_  k ) )  /\  ( F `  k )  <  ( F `  N )
)  ->  k  e.  RR )
351nnred 9064 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  N  e.  RR )
361nngt0d 9095 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  0  <  N )
37 0re 8087 . . . . . . . . . . . . . . . . 17  |-  0  e.  RR
38 ltle 8175 . . . . . . . . . . . . . . . . 17  |-  ( ( 0  e.  RR  /\  N  e.  RR )  ->  ( 0  <  N  ->  0  <_  N )
)
3937, 38mpan 424 . . . . . . . . . . . . . . . 16  |-  ( N  e.  RR  ->  (
0  <  N  ->  0  <_  N ) )
4035, 36, 39sylc 62 . . . . . . . . . . . . . . 15  |-  ( ph  ->  0  <_  N )
41 1red 8102 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  1  e.  RR )
4241, 35addge02d 8622 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( 0  <_  N  <->  1  <_  ( N  + 
1 ) ) )
4340, 42mpbid 147 . . . . . . . . . . . . . 14  |-  ( ph  ->  1  <_  ( N  +  1 ) )
4443ad2antrr 488 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
( N  +  1 )  e.  ZZ  /\  k  e.  ZZ  /\  ( N  +  1 )  <_  k ) )  /\  ( F `  k )  <  ( F `  N )
)  ->  1  <_  ( N  +  1 ) )
45 simplr3 1044 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
( N  +  1 )  e.  ZZ  /\  k  e.  ZZ  /\  ( N  +  1 )  <_  k ) )  /\  ( F `  k )  <  ( F `  N )
)  ->  ( N  +  1 )  <_ 
k )
4631, 33, 34, 44, 45letrd 8211 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
( N  +  1 )  e.  ZZ  /\  k  e.  ZZ  /\  ( N  +  1 )  <_  k ) )  /\  ( F `  k )  <  ( F `  N )
)  ->  1  <_  k )
47 elnnz1 9410 . . . . . . . . . . . 12  |-  ( k  e.  NN  <->  ( k  e.  ZZ  /\  1  <_ 
k ) )
4830, 46, 47sylanbrc 417 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
( N  +  1 )  e.  ZZ  /\  k  e.  ZZ  /\  ( N  +  1 )  <_  k ) )  /\  ( F `  k )  <  ( F `  N )
)  ->  k  e.  NN )
4948peano2nnd 9066 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
( N  +  1 )  e.  ZZ  /\  k  e.  ZZ  /\  ( N  +  1 )  <_  k ) )  /\  ( F `  k )  <  ( F `  N )
)  ->  ( k  +  1 )  e.  NN )
5029, 49ffvelcdmd 5728 . . . . . . . . 9  |-  ( ( ( ph  /\  (
( N  +  1 )  e.  ZZ  /\  k  e.  ZZ  /\  ( N  +  1 )  <_  k ) )  /\  ( F `  k )  <  ( F `  N )
)  ->  ( F `  ( k  +  1 ) )  e.  RR+ )
5150rpred 9833 . . . . . . . 8  |-  ( ( ( ph  /\  (
( N  +  1 )  e.  ZZ  /\  k  e.  ZZ  /\  ( N  +  1 )  <_  k ) )  /\  ( F `  k )  <  ( F `  N )
)  ->  ( F `  ( k  +  1 ) )  e.  RR )
5229, 48ffvelcdmd 5728 . . . . . . . . 9  |-  ( ( ( ph  /\  (
( N  +  1 )  e.  ZZ  /\  k  e.  ZZ  /\  ( N  +  1 )  <_  k ) )  /\  ( F `  k )  <  ( F `  N )
)  ->  ( F `  k )  e.  RR+ )
5352rpred 9833 . . . . . . . 8  |-  ( ( ( ph  /\  (
( N  +  1 )  e.  ZZ  /\  k  e.  ZZ  /\  ( N  +  1 )  <_  k ) )  /\  ( F `  k )  <  ( F `  N )
)  ->  ( F `  k )  e.  RR )
541ad2antrr 488 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
( N  +  1 )  e.  ZZ  /\  k  e.  ZZ  /\  ( N  +  1 )  <_  k ) )  /\  ( F `  k )  <  ( F `  N )
)  ->  N  e.  NN )
5529, 54ffvelcdmd 5728 . . . . . . . . 9  |-  ( ( ( ph  /\  (
( N  +  1 )  e.  ZZ  /\  k  e.  ZZ  /\  ( N  +  1 )  <_  k ) )  /\  ( F `  k )  <  ( F `  N )
)  ->  ( F `  N )  e.  RR+ )
5655rpred 9833 . . . . . . . 8  |-  ( ( ( ph  /\  (
( N  +  1 )  e.  ZZ  /\  k  e.  ZZ  /\  ( N  +  1 )  <_  k ) )  /\  ( F `  k )  <  ( F `  N )
)  ->  ( F `  N )  e.  RR )
57 simpll 527 . . . . . . . . 9  |-  ( ( ( ph  /\  (
( N  +  1 )  e.  ZZ  /\  k  e.  ZZ  /\  ( N  +  1 )  <_  k ) )  /\  ( F `  k )  <  ( F `  N )
)  ->  ph )
5822, 23, 24resqrexlemdec 11392 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  NN )  ->  ( F `
 ( k  +  1 ) )  < 
( F `  k
) )
5957, 48, 58syl2anc 411 . . . . . . . 8  |-  ( ( ( ph  /\  (
( N  +  1 )  e.  ZZ  /\  k  e.  ZZ  /\  ( N  +  1 )  <_  k ) )  /\  ( F `  k )  <  ( F `  N )
)  ->  ( F `  ( k  +  1 ) )  <  ( F `  k )
)
60 simpr 110 . . . . . . . 8  |-  ( ( ( ph  /\  (
( N  +  1 )  e.  ZZ  /\  k  e.  ZZ  /\  ( N  +  1 )  <_  k ) )  /\  ( F `  k )  <  ( F `  N )
)  ->  ( F `  k )  <  ( F `  N )
)
6151, 53, 56, 59, 60lttrd 8213 . . . . . . 7  |-  ( ( ( ph  /\  (
( N  +  1 )  e.  ZZ  /\  k  e.  ZZ  /\  ( N  +  1 )  <_  k ) )  /\  ( F `  k )  <  ( F `  N )
)  ->  ( F `  ( k  +  1 ) )  <  ( F `  N )
)
6261ex 115 . . . . . 6  |-  ( (
ph  /\  ( ( N  +  1 )  e.  ZZ  /\  k  e.  ZZ  /\  ( N  +  1 )  <_ 
k ) )  -> 
( ( F `  k )  <  ( F `  N )  ->  ( F `  (
k  +  1 ) )  <  ( F `
 N ) ) )
6362expcom 116 . . . . 5  |-  ( ( ( N  +  1 )  e.  ZZ  /\  k  e.  ZZ  /\  ( N  +  1 )  <_  k )  -> 
( ph  ->  ( ( F `  k )  <  ( F `  N )  ->  ( F `  ( k  +  1 ) )  <  ( F `  N ) ) ) )
6463a2d 26 . . . 4  |-  ( ( ( N  +  1 )  e.  ZZ  /\  k  e.  ZZ  /\  ( N  +  1 )  <_  k )  -> 
( ( ph  ->  ( F `  k )  <  ( F `  N ) )  -> 
( ph  ->  ( F `
 ( k  +  1 ) )  < 
( F `  N
) ) ) )
6512, 15, 18, 21, 27, 64uzind 9499 . . 3  |-  ( ( ( N  +  1 )  e.  ZZ  /\  M  e.  ZZ  /\  ( N  +  1 )  <_  M )  -> 
( ph  ->  ( F `
 M )  < 
( F `  N
) ) )
663, 5, 9, 65syl3anc 1250 . 2  |-  ( ph  ->  ( ph  ->  ( F `  M )  <  ( F `  N
) ) )
6766pm2.43i 49 1  |-  ( ph  ->  ( F `  M
)  <  ( F `  N ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 981    = wceq 1373    e. wcel 2177   {csn 3637   class class class wbr 4050    X. cxp 4680   -->wf 5275   ` cfv 5279  (class class class)co 5956    e. cmpo 5958   RRcr 7939   0cc0 7940   1c1 7941    + caddc 7943    < clt 8122    <_ cle 8123    / cdiv 8760   NNcn 9051   2c2 9102   ZZcz 9387   RR+crp 9790    seqcseq 10609
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4166  ax-sep 4169  ax-nul 4177  ax-pow 4225  ax-pr 4260  ax-un 4487  ax-setind 4592  ax-iinf 4643  ax-cnex 8031  ax-resscn 8032  ax-1cn 8033  ax-1re 8034  ax-icn 8035  ax-addcl 8036  ax-addrcl 8037  ax-mulcl 8038  ax-mulrcl 8039  ax-addcom 8040  ax-mulcom 8041  ax-addass 8042  ax-mulass 8043  ax-distr 8044  ax-i2m1 8045  ax-0lt1 8046  ax-1rid 8047  ax-0id 8048  ax-rnegex 8049  ax-precex 8050  ax-cnre 8051  ax-pre-ltirr 8052  ax-pre-ltwlin 8053  ax-pre-lttrn 8054  ax-pre-apti 8055  ax-pre-ltadd 8056  ax-pre-mulgt0 8057  ax-pre-mulext 8058
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-if 3576  df-pw 3622  df-sn 3643  df-pr 3644  df-op 3646  df-uni 3856  df-int 3891  df-iun 3934  df-br 4051  df-opab 4113  df-mpt 4114  df-tr 4150  df-id 4347  df-po 4350  df-iso 4351  df-iord 4420  df-on 4422  df-ilim 4423  df-suc 4425  df-iom 4646  df-xp 4688  df-rel 4689  df-cnv 4690  df-co 4691  df-dm 4692  df-rn 4693  df-res 4694  df-ima 4695  df-iota 5240  df-fun 5281  df-fn 5282  df-f 5283  df-f1 5284  df-fo 5285  df-f1o 5286  df-fv 5287  df-riota 5911  df-ov 5959  df-oprab 5960  df-mpo 5961  df-1st 6238  df-2nd 6239  df-recs 6403  df-frec 6489  df-pnf 8124  df-mnf 8125  df-xr 8126  df-ltxr 8127  df-le 8128  df-sub 8260  df-neg 8261  df-reap 8663  df-ap 8670  df-div 8761  df-inn 9052  df-2 9110  df-3 9111  df-4 9112  df-n0 9311  df-z 9388  df-uz 9664  df-rp 9791  df-seqfrec 10610  df-exp 10701
This theorem is referenced by:  resqrexlemnm  11399  resqrexlemcvg  11400  resqrexlemoverl  11402  resqrexlemglsq  11403
  Copyright terms: Public domain W3C validator