ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resqrexlemdecn Unicode version

Theorem resqrexlemdecn 10739
Description: Lemma for resqrex 10753. The sequence is decreasing. (Contributed by Jim Kingdon, 31-Jul-2021.)
Hypotheses
Ref Expression
resqrexlemex.seq  |-  F  =  seq 1 ( ( y  e.  RR+ ,  z  e.  RR+  |->  ( ( y  +  ( A  /  y ) )  /  2 ) ) ,  ( NN  X.  { ( 1  +  A ) } ) )
resqrexlemex.a  |-  ( ph  ->  A  e.  RR )
resqrexlemex.agt0  |-  ( ph  ->  0  <_  A )
resqrexlemdecn.n  |-  ( ph  ->  N  e.  NN )
resqrexlemdecn.m  |-  ( ph  ->  M  e.  NN )
resqrexlemdecn.nm  |-  ( ph  ->  N  <  M )
Assertion
Ref Expression
resqrexlemdecn  |-  ( ph  ->  ( F `  M
)  <  ( F `  N ) )
Distinct variable groups:    y, A, z    ph, y, z
Allowed substitution hints:    F( y, z)    M( y, z)    N( y, z)

Proof of Theorem resqrexlemdecn
Dummy variables  k  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 resqrexlemdecn.n . . . . 5  |-  ( ph  ->  N  e.  NN )
21nnzd 9130 . . . 4  |-  ( ph  ->  N  e.  ZZ )
32peano2zd 9134 . . 3  |-  ( ph  ->  ( N  +  1 )  e.  ZZ )
4 resqrexlemdecn.m . . . 4  |-  ( ph  ->  M  e.  NN )
54nnzd 9130 . . 3  |-  ( ph  ->  M  e.  ZZ )
6 resqrexlemdecn.nm . . . 4  |-  ( ph  ->  N  <  M )
7 nnltp1le 9072 . . . . 5  |-  ( ( N  e.  NN  /\  M  e.  NN )  ->  ( N  <  M  <->  ( N  +  1 )  <_  M ) )
81, 4, 7syl2anc 408 . . . 4  |-  ( ph  ->  ( N  <  M  <->  ( N  +  1 )  <_  M ) )
96, 8mpbid 146 . . 3  |-  ( ph  ->  ( N  +  1 )  <_  M )
10 fveq2 5389 . . . . . 6  |-  ( w  =  ( N  + 
1 )  ->  ( F `  w )  =  ( F `  ( N  +  1
) ) )
1110breq1d 3909 . . . . 5  |-  ( w  =  ( N  + 
1 )  ->  (
( F `  w
)  <  ( F `  N )  <->  ( F `  ( N  +  1 ) )  <  ( F `  N )
) )
1211imbi2d 229 . . . 4  |-  ( w  =  ( N  + 
1 )  ->  (
( ph  ->  ( F `
 w )  < 
( F `  N
) )  <->  ( ph  ->  ( F `  ( N  +  1 ) )  <  ( F `
 N ) ) ) )
13 fveq2 5389 . . . . . 6  |-  ( w  =  k  ->  ( F `  w )  =  ( F `  k ) )
1413breq1d 3909 . . . . 5  |-  ( w  =  k  ->  (
( F `  w
)  <  ( F `  N )  <->  ( F `  k )  <  ( F `  N )
) )
1514imbi2d 229 . . . 4  |-  ( w  =  k  ->  (
( ph  ->  ( F `
 w )  < 
( F `  N
) )  <->  ( ph  ->  ( F `  k
)  <  ( F `  N ) ) ) )
16 fveq2 5389 . . . . . 6  |-  ( w  =  ( k  +  1 )  ->  ( F `  w )  =  ( F `  ( k  +  1 ) ) )
1716breq1d 3909 . . . . 5  |-  ( w  =  ( k  +  1 )  ->  (
( F `  w
)  <  ( F `  N )  <->  ( F `  ( k  +  1 ) )  <  ( F `  N )
) )
1817imbi2d 229 . . . 4  |-  ( w  =  ( k  +  1 )  ->  (
( ph  ->  ( F `
 w )  < 
( F `  N
) )  <->  ( ph  ->  ( F `  (
k  +  1 ) )  <  ( F `
 N ) ) ) )
19 fveq2 5389 . . . . . 6  |-  ( w  =  M  ->  ( F `  w )  =  ( F `  M ) )
2019breq1d 3909 . . . . 5  |-  ( w  =  M  ->  (
( F `  w
)  <  ( F `  N )  <->  ( F `  M )  <  ( F `  N )
) )
2120imbi2d 229 . . . 4  |-  ( w  =  M  ->  (
( ph  ->  ( F `
 w )  < 
( F `  N
) )  <->  ( ph  ->  ( F `  M
)  <  ( F `  N ) ) ) )
22 resqrexlemex.seq . . . . . . 7  |-  F  =  seq 1 ( ( y  e.  RR+ ,  z  e.  RR+  |->  ( ( y  +  ( A  /  y ) )  /  2 ) ) ,  ( NN  X.  { ( 1  +  A ) } ) )
23 resqrexlemex.a . . . . . . 7  |-  ( ph  ->  A  e.  RR )
24 resqrexlemex.agt0 . . . . . . 7  |-  ( ph  ->  0  <_  A )
2522, 23, 24resqrexlemdec 10738 . . . . . 6  |-  ( (
ph  /\  N  e.  NN )  ->  ( F `
 ( N  + 
1 ) )  < 
( F `  N
) )
261, 25mpdan 417 . . . . 5  |-  ( ph  ->  ( F `  ( N  +  1 ) )  <  ( F `
 N ) )
2726a1i 9 . . . 4  |-  ( ( N  +  1 )  e.  ZZ  ->  ( ph  ->  ( F `  ( N  +  1
) )  <  ( F `  N )
) )
2822, 23, 24resqrexlemf 10734 . . . . . . . . . . 11  |-  ( ph  ->  F : NN --> RR+ )
2928ad2antrr 479 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
( N  +  1 )  e.  ZZ  /\  k  e.  ZZ  /\  ( N  +  1 )  <_  k ) )  /\  ( F `  k )  <  ( F `  N )
)  ->  F : NN
--> RR+ )
30 simplr2 1009 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
( N  +  1 )  e.  ZZ  /\  k  e.  ZZ  /\  ( N  +  1 )  <_  k ) )  /\  ( F `  k )  <  ( F `  N )
)  ->  k  e.  ZZ )
31 1red 7749 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
( N  +  1 )  e.  ZZ  /\  k  e.  ZZ  /\  ( N  +  1 )  <_  k ) )  /\  ( F `  k )  <  ( F `  N )
)  ->  1  e.  RR )
323ad2antrr 479 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
( N  +  1 )  e.  ZZ  /\  k  e.  ZZ  /\  ( N  +  1 )  <_  k ) )  /\  ( F `  k )  <  ( F `  N )
)  ->  ( N  +  1 )  e.  ZZ )
3332zred 9131 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
( N  +  1 )  e.  ZZ  /\  k  e.  ZZ  /\  ( N  +  1 )  <_  k ) )  /\  ( F `  k )  <  ( F `  N )
)  ->  ( N  +  1 )  e.  RR )
3430zred 9131 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
( N  +  1 )  e.  ZZ  /\  k  e.  ZZ  /\  ( N  +  1 )  <_  k ) )  /\  ( F `  k )  <  ( F `  N )
)  ->  k  e.  RR )
351nnred 8697 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  N  e.  RR )
361nngt0d 8728 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  0  <  N )
37 0re 7734 . . . . . . . . . . . . . . . . 17  |-  0  e.  RR
38 ltle 7819 . . . . . . . . . . . . . . . . 17  |-  ( ( 0  e.  RR  /\  N  e.  RR )  ->  ( 0  <  N  ->  0  <_  N )
)
3937, 38mpan 420 . . . . . . . . . . . . . . . 16  |-  ( N  e.  RR  ->  (
0  <  N  ->  0  <_  N ) )
4035, 36, 39sylc 62 . . . . . . . . . . . . . . 15  |-  ( ph  ->  0  <_  N )
41 1red 7749 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  1  e.  RR )
4241, 35addge02d 8263 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( 0  <_  N  <->  1  <_  ( N  + 
1 ) ) )
4340, 42mpbid 146 . . . . . . . . . . . . . 14  |-  ( ph  ->  1  <_  ( N  +  1 ) )
4443ad2antrr 479 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
( N  +  1 )  e.  ZZ  /\  k  e.  ZZ  /\  ( N  +  1 )  <_  k ) )  /\  ( F `  k )  <  ( F `  N )
)  ->  1  <_  ( N  +  1 ) )
45 simplr3 1010 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
( N  +  1 )  e.  ZZ  /\  k  e.  ZZ  /\  ( N  +  1 )  <_  k ) )  /\  ( F `  k )  <  ( F `  N )
)  ->  ( N  +  1 )  <_ 
k )
4631, 33, 34, 44, 45letrd 7854 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
( N  +  1 )  e.  ZZ  /\  k  e.  ZZ  /\  ( N  +  1 )  <_  k ) )  /\  ( F `  k )  <  ( F `  N )
)  ->  1  <_  k )
47 elnnz1 9035 . . . . . . . . . . . 12  |-  ( k  e.  NN  <->  ( k  e.  ZZ  /\  1  <_ 
k ) )
4830, 46, 47sylanbrc 413 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
( N  +  1 )  e.  ZZ  /\  k  e.  ZZ  /\  ( N  +  1 )  <_  k ) )  /\  ( F `  k )  <  ( F `  N )
)  ->  k  e.  NN )
4948peano2nnd 8699 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
( N  +  1 )  e.  ZZ  /\  k  e.  ZZ  /\  ( N  +  1 )  <_  k ) )  /\  ( F `  k )  <  ( F `  N )
)  ->  ( k  +  1 )  e.  NN )
5029, 49ffvelrnd 5524 . . . . . . . . 9  |-  ( ( ( ph  /\  (
( N  +  1 )  e.  ZZ  /\  k  e.  ZZ  /\  ( N  +  1 )  <_  k ) )  /\  ( F `  k )  <  ( F `  N )
)  ->  ( F `  ( k  +  1 ) )  e.  RR+ )
5150rpred 9438 . . . . . . . 8  |-  ( ( ( ph  /\  (
( N  +  1 )  e.  ZZ  /\  k  e.  ZZ  /\  ( N  +  1 )  <_  k ) )  /\  ( F `  k )  <  ( F `  N )
)  ->  ( F `  ( k  +  1 ) )  e.  RR )
5229, 48ffvelrnd 5524 . . . . . . . . 9  |-  ( ( ( ph  /\  (
( N  +  1 )  e.  ZZ  /\  k  e.  ZZ  /\  ( N  +  1 )  <_  k ) )  /\  ( F `  k )  <  ( F `  N )
)  ->  ( F `  k )  e.  RR+ )
5352rpred 9438 . . . . . . . 8  |-  ( ( ( ph  /\  (
( N  +  1 )  e.  ZZ  /\  k  e.  ZZ  /\  ( N  +  1 )  <_  k ) )  /\  ( F `  k )  <  ( F `  N )
)  ->  ( F `  k )  e.  RR )
541ad2antrr 479 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
( N  +  1 )  e.  ZZ  /\  k  e.  ZZ  /\  ( N  +  1 )  <_  k ) )  /\  ( F `  k )  <  ( F `  N )
)  ->  N  e.  NN )
5529, 54ffvelrnd 5524 . . . . . . . . 9  |-  ( ( ( ph  /\  (
( N  +  1 )  e.  ZZ  /\  k  e.  ZZ  /\  ( N  +  1 )  <_  k ) )  /\  ( F `  k )  <  ( F `  N )
)  ->  ( F `  N )  e.  RR+ )
5655rpred 9438 . . . . . . . 8  |-  ( ( ( ph  /\  (
( N  +  1 )  e.  ZZ  /\  k  e.  ZZ  /\  ( N  +  1 )  <_  k ) )  /\  ( F `  k )  <  ( F `  N )
)  ->  ( F `  N )  e.  RR )
57 simpll 503 . . . . . . . . 9  |-  ( ( ( ph  /\  (
( N  +  1 )  e.  ZZ  /\  k  e.  ZZ  /\  ( N  +  1 )  <_  k ) )  /\  ( F `  k )  <  ( F `  N )
)  ->  ph )
5822, 23, 24resqrexlemdec 10738 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  NN )  ->  ( F `
 ( k  +  1 ) )  < 
( F `  k
) )
5957, 48, 58syl2anc 408 . . . . . . . 8  |-  ( ( ( ph  /\  (
( N  +  1 )  e.  ZZ  /\  k  e.  ZZ  /\  ( N  +  1 )  <_  k ) )  /\  ( F `  k )  <  ( F `  N )
)  ->  ( F `  ( k  +  1 ) )  <  ( F `  k )
)
60 simpr 109 . . . . . . . 8  |-  ( ( ( ph  /\  (
( N  +  1 )  e.  ZZ  /\  k  e.  ZZ  /\  ( N  +  1 )  <_  k ) )  /\  ( F `  k )  <  ( F `  N )
)  ->  ( F `  k )  <  ( F `  N )
)
6151, 53, 56, 59, 60lttrd 7856 . . . . . . 7  |-  ( ( ( ph  /\  (
( N  +  1 )  e.  ZZ  /\  k  e.  ZZ  /\  ( N  +  1 )  <_  k ) )  /\  ( F `  k )  <  ( F `  N )
)  ->  ( F `  ( k  +  1 ) )  <  ( F `  N )
)
6261ex 114 . . . . . 6  |-  ( (
ph  /\  ( ( N  +  1 )  e.  ZZ  /\  k  e.  ZZ  /\  ( N  +  1 )  <_ 
k ) )  -> 
( ( F `  k )  <  ( F `  N )  ->  ( F `  (
k  +  1 ) )  <  ( F `
 N ) ) )
6362expcom 115 . . . . 5  |-  ( ( ( N  +  1 )  e.  ZZ  /\  k  e.  ZZ  /\  ( N  +  1 )  <_  k )  -> 
( ph  ->  ( ( F `  k )  <  ( F `  N )  ->  ( F `  ( k  +  1 ) )  <  ( F `  N ) ) ) )
6463a2d 26 . . . 4  |-  ( ( ( N  +  1 )  e.  ZZ  /\  k  e.  ZZ  /\  ( N  +  1 )  <_  k )  -> 
( ( ph  ->  ( F `  k )  <  ( F `  N ) )  -> 
( ph  ->  ( F `
 ( k  +  1 ) )  < 
( F `  N
) ) ) )
6512, 15, 18, 21, 27, 64uzind 9120 . . 3  |-  ( ( ( N  +  1 )  e.  ZZ  /\  M  e.  ZZ  /\  ( N  +  1 )  <_  M )  -> 
( ph  ->  ( F `
 M )  < 
( F `  N
) ) )
663, 5, 9, 65syl3anc 1201 . 2  |-  ( ph  ->  ( ph  ->  ( F `  M )  <  ( F `  N
) ) )
6766pm2.43i 49 1  |-  ( ph  ->  ( F `  M
)  <  ( F `  N ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 947    = wceq 1316    e. wcel 1465   {csn 3497   class class class wbr 3899    X. cxp 4507   -->wf 5089   ` cfv 5093  (class class class)co 5742    e. cmpo 5744   RRcr 7587   0cc0 7588   1c1 7589    + caddc 7591    < clt 7768    <_ cle 7769    / cdiv 8399   NNcn 8684   2c2 8735   ZZcz 9012   RR+crp 9397    seqcseq 10173
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 588  ax-in2 589  ax-io 683  ax-5 1408  ax-7 1409  ax-gen 1410  ax-ie1 1454  ax-ie2 1455  ax-8 1467  ax-10 1468  ax-11 1469  ax-i12 1470  ax-bndl 1471  ax-4 1472  ax-13 1476  ax-14 1477  ax-17 1491  ax-i9 1495  ax-ial 1499  ax-i5r 1500  ax-ext 2099  ax-coll 4013  ax-sep 4016  ax-nul 4024  ax-pow 4068  ax-pr 4101  ax-un 4325  ax-setind 4422  ax-iinf 4472  ax-cnex 7679  ax-resscn 7680  ax-1cn 7681  ax-1re 7682  ax-icn 7683  ax-addcl 7684  ax-addrcl 7685  ax-mulcl 7686  ax-mulrcl 7687  ax-addcom 7688  ax-mulcom 7689  ax-addass 7690  ax-mulass 7691  ax-distr 7692  ax-i2m1 7693  ax-0lt1 7694  ax-1rid 7695  ax-0id 7696  ax-rnegex 7697  ax-precex 7698  ax-cnre 7699  ax-pre-ltirr 7700  ax-pre-ltwlin 7701  ax-pre-lttrn 7702  ax-pre-apti 7703  ax-pre-ltadd 7704  ax-pre-mulgt0 7705  ax-pre-mulext 7706
This theorem depends on definitions:  df-bi 116  df-dc 805  df-3or 948  df-3an 949  df-tru 1319  df-fal 1322  df-nf 1422  df-sb 1721  df-eu 1980  df-mo 1981  df-clab 2104  df-cleq 2110  df-clel 2113  df-nfc 2247  df-ne 2286  df-nel 2381  df-ral 2398  df-rex 2399  df-reu 2400  df-rmo 2401  df-rab 2402  df-v 2662  df-sbc 2883  df-csb 2976  df-dif 3043  df-un 3045  df-in 3047  df-ss 3054  df-nul 3334  df-if 3445  df-pw 3482  df-sn 3503  df-pr 3504  df-op 3506  df-uni 3707  df-int 3742  df-iun 3785  df-br 3900  df-opab 3960  df-mpt 3961  df-tr 3997  df-id 4185  df-po 4188  df-iso 4189  df-iord 4258  df-on 4260  df-ilim 4261  df-suc 4263  df-iom 4475  df-xp 4515  df-rel 4516  df-cnv 4517  df-co 4518  df-dm 4519  df-rn 4520  df-res 4521  df-ima 4522  df-iota 5058  df-fun 5095  df-fn 5096  df-f 5097  df-f1 5098  df-fo 5099  df-f1o 5100  df-fv 5101  df-riota 5698  df-ov 5745  df-oprab 5746  df-mpo 5747  df-1st 6006  df-2nd 6007  df-recs 6170  df-frec 6256  df-pnf 7770  df-mnf 7771  df-xr 7772  df-ltxr 7773  df-le 7774  df-sub 7903  df-neg 7904  df-reap 8304  df-ap 8311  df-div 8400  df-inn 8685  df-2 8743  df-3 8744  df-4 8745  df-n0 8936  df-z 9013  df-uz 9283  df-rp 9398  df-seqfrec 10174  df-exp 10248
This theorem is referenced by:  resqrexlemnm  10745  resqrexlemcvg  10746  resqrexlemoverl  10748  resqrexlemglsq  10749
  Copyright terms: Public domain W3C validator