ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resqrexlemdecn Unicode version

Theorem resqrexlemdecn 11023
Description: Lemma for resqrex 11037. The sequence is decreasing. (Contributed by Jim Kingdon, 31-Jul-2021.)
Hypotheses
Ref Expression
resqrexlemex.seq  |-  F  =  seq 1 ( ( y  e.  RR+ ,  z  e.  RR+  |->  ( ( y  +  ( A  /  y ) )  /  2 ) ) ,  ( NN  X.  { ( 1  +  A ) } ) )
resqrexlemex.a  |-  ( ph  ->  A  e.  RR )
resqrexlemex.agt0  |-  ( ph  ->  0  <_  A )
resqrexlemdecn.n  |-  ( ph  ->  N  e.  NN )
resqrexlemdecn.m  |-  ( ph  ->  M  e.  NN )
resqrexlemdecn.nm  |-  ( ph  ->  N  <  M )
Assertion
Ref Expression
resqrexlemdecn  |-  ( ph  ->  ( F `  M
)  <  ( F `  N ) )
Distinct variable groups:    y, A, z    ph, y, z
Allowed substitution hints:    F( y, z)    M( y, z)    N( y, z)

Proof of Theorem resqrexlemdecn
Dummy variables  k  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 resqrexlemdecn.n . . . . 5  |-  ( ph  ->  N  e.  NN )
21nnzd 9376 . . . 4  |-  ( ph  ->  N  e.  ZZ )
32peano2zd 9380 . . 3  |-  ( ph  ->  ( N  +  1 )  e.  ZZ )
4 resqrexlemdecn.m . . . 4  |-  ( ph  ->  M  e.  NN )
54nnzd 9376 . . 3  |-  ( ph  ->  M  e.  ZZ )
6 resqrexlemdecn.nm . . . 4  |-  ( ph  ->  N  <  M )
7 nnltp1le 9315 . . . . 5  |-  ( ( N  e.  NN  /\  M  e.  NN )  ->  ( N  <  M  <->  ( N  +  1 )  <_  M ) )
81, 4, 7syl2anc 411 . . . 4  |-  ( ph  ->  ( N  <  M  <->  ( N  +  1 )  <_  M ) )
96, 8mpbid 147 . . 3  |-  ( ph  ->  ( N  +  1 )  <_  M )
10 fveq2 5517 . . . . . 6  |-  ( w  =  ( N  + 
1 )  ->  ( F `  w )  =  ( F `  ( N  +  1
) ) )
1110breq1d 4015 . . . . 5  |-  ( w  =  ( N  + 
1 )  ->  (
( F `  w
)  <  ( F `  N )  <->  ( F `  ( N  +  1 ) )  <  ( F `  N )
) )
1211imbi2d 230 . . . 4  |-  ( w  =  ( N  + 
1 )  ->  (
( ph  ->  ( F `
 w )  < 
( F `  N
) )  <->  ( ph  ->  ( F `  ( N  +  1 ) )  <  ( F `
 N ) ) ) )
13 fveq2 5517 . . . . . 6  |-  ( w  =  k  ->  ( F `  w )  =  ( F `  k ) )
1413breq1d 4015 . . . . 5  |-  ( w  =  k  ->  (
( F `  w
)  <  ( F `  N )  <->  ( F `  k )  <  ( F `  N )
) )
1514imbi2d 230 . . . 4  |-  ( w  =  k  ->  (
( ph  ->  ( F `
 w )  < 
( F `  N
) )  <->  ( ph  ->  ( F `  k
)  <  ( F `  N ) ) ) )
16 fveq2 5517 . . . . . 6  |-  ( w  =  ( k  +  1 )  ->  ( F `  w )  =  ( F `  ( k  +  1 ) ) )
1716breq1d 4015 . . . . 5  |-  ( w  =  ( k  +  1 )  ->  (
( F `  w
)  <  ( F `  N )  <->  ( F `  ( k  +  1 ) )  <  ( F `  N )
) )
1817imbi2d 230 . . . 4  |-  ( w  =  ( k  +  1 )  ->  (
( ph  ->  ( F `
 w )  < 
( F `  N
) )  <->  ( ph  ->  ( F `  (
k  +  1 ) )  <  ( F `
 N ) ) ) )
19 fveq2 5517 . . . . . 6  |-  ( w  =  M  ->  ( F `  w )  =  ( F `  M ) )
2019breq1d 4015 . . . . 5  |-  ( w  =  M  ->  (
( F `  w
)  <  ( F `  N )  <->  ( F `  M )  <  ( F `  N )
) )
2120imbi2d 230 . . . 4  |-  ( w  =  M  ->  (
( ph  ->  ( F `
 w )  < 
( F `  N
) )  <->  ( ph  ->  ( F `  M
)  <  ( F `  N ) ) ) )
22 resqrexlemex.seq . . . . . . 7  |-  F  =  seq 1 ( ( y  e.  RR+ ,  z  e.  RR+  |->  ( ( y  +  ( A  /  y ) )  /  2 ) ) ,  ( NN  X.  { ( 1  +  A ) } ) )
23 resqrexlemex.a . . . . . . 7  |-  ( ph  ->  A  e.  RR )
24 resqrexlemex.agt0 . . . . . . 7  |-  ( ph  ->  0  <_  A )
2522, 23, 24resqrexlemdec 11022 . . . . . 6  |-  ( (
ph  /\  N  e.  NN )  ->  ( F `
 ( N  + 
1 ) )  < 
( F `  N
) )
261, 25mpdan 421 . . . . 5  |-  ( ph  ->  ( F `  ( N  +  1 ) )  <  ( F `
 N ) )
2726a1i 9 . . . 4  |-  ( ( N  +  1 )  e.  ZZ  ->  ( ph  ->  ( F `  ( N  +  1
) )  <  ( F `  N )
) )
2822, 23, 24resqrexlemf 11018 . . . . . . . . . . 11  |-  ( ph  ->  F : NN --> RR+ )
2928ad2antrr 488 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
( N  +  1 )  e.  ZZ  /\  k  e.  ZZ  /\  ( N  +  1 )  <_  k ) )  /\  ( F `  k )  <  ( F `  N )
)  ->  F : NN
--> RR+ )
30 simplr2 1040 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
( N  +  1 )  e.  ZZ  /\  k  e.  ZZ  /\  ( N  +  1 )  <_  k ) )  /\  ( F `  k )  <  ( F `  N )
)  ->  k  e.  ZZ )
31 1red 7974 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
( N  +  1 )  e.  ZZ  /\  k  e.  ZZ  /\  ( N  +  1 )  <_  k ) )  /\  ( F `  k )  <  ( F `  N )
)  ->  1  e.  RR )
323ad2antrr 488 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
( N  +  1 )  e.  ZZ  /\  k  e.  ZZ  /\  ( N  +  1 )  <_  k ) )  /\  ( F `  k )  <  ( F `  N )
)  ->  ( N  +  1 )  e.  ZZ )
3332zred 9377 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
( N  +  1 )  e.  ZZ  /\  k  e.  ZZ  /\  ( N  +  1 )  <_  k ) )  /\  ( F `  k )  <  ( F `  N )
)  ->  ( N  +  1 )  e.  RR )
3430zred 9377 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
( N  +  1 )  e.  ZZ  /\  k  e.  ZZ  /\  ( N  +  1 )  <_  k ) )  /\  ( F `  k )  <  ( F `  N )
)  ->  k  e.  RR )
351nnred 8934 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  N  e.  RR )
361nngt0d 8965 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  0  <  N )
37 0re 7959 . . . . . . . . . . . . . . . . 17  |-  0  e.  RR
38 ltle 8047 . . . . . . . . . . . . . . . . 17  |-  ( ( 0  e.  RR  /\  N  e.  RR )  ->  ( 0  <  N  ->  0  <_  N )
)
3937, 38mpan 424 . . . . . . . . . . . . . . . 16  |-  ( N  e.  RR  ->  (
0  <  N  ->  0  <_  N ) )
4035, 36, 39sylc 62 . . . . . . . . . . . . . . 15  |-  ( ph  ->  0  <_  N )
41 1red 7974 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  1  e.  RR )
4241, 35addge02d 8493 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( 0  <_  N  <->  1  <_  ( N  + 
1 ) ) )
4340, 42mpbid 147 . . . . . . . . . . . . . 14  |-  ( ph  ->  1  <_  ( N  +  1 ) )
4443ad2antrr 488 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
( N  +  1 )  e.  ZZ  /\  k  e.  ZZ  /\  ( N  +  1 )  <_  k ) )  /\  ( F `  k )  <  ( F `  N )
)  ->  1  <_  ( N  +  1 ) )
45 simplr3 1041 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
( N  +  1 )  e.  ZZ  /\  k  e.  ZZ  /\  ( N  +  1 )  <_  k ) )  /\  ( F `  k )  <  ( F `  N )
)  ->  ( N  +  1 )  <_ 
k )
4631, 33, 34, 44, 45letrd 8083 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
( N  +  1 )  e.  ZZ  /\  k  e.  ZZ  /\  ( N  +  1 )  <_  k ) )  /\  ( F `  k )  <  ( F `  N )
)  ->  1  <_  k )
47 elnnz1 9278 . . . . . . . . . . . 12  |-  ( k  e.  NN  <->  ( k  e.  ZZ  /\  1  <_ 
k ) )
4830, 46, 47sylanbrc 417 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
( N  +  1 )  e.  ZZ  /\  k  e.  ZZ  /\  ( N  +  1 )  <_  k ) )  /\  ( F `  k )  <  ( F `  N )
)  ->  k  e.  NN )
4948peano2nnd 8936 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
( N  +  1 )  e.  ZZ  /\  k  e.  ZZ  /\  ( N  +  1 )  <_  k ) )  /\  ( F `  k )  <  ( F `  N )
)  ->  ( k  +  1 )  e.  NN )
5029, 49ffvelcdmd 5654 . . . . . . . . 9  |-  ( ( ( ph  /\  (
( N  +  1 )  e.  ZZ  /\  k  e.  ZZ  /\  ( N  +  1 )  <_  k ) )  /\  ( F `  k )  <  ( F `  N )
)  ->  ( F `  ( k  +  1 ) )  e.  RR+ )
5150rpred 9698 . . . . . . . 8  |-  ( ( ( ph  /\  (
( N  +  1 )  e.  ZZ  /\  k  e.  ZZ  /\  ( N  +  1 )  <_  k ) )  /\  ( F `  k )  <  ( F `  N )
)  ->  ( F `  ( k  +  1 ) )  e.  RR )
5229, 48ffvelcdmd 5654 . . . . . . . . 9  |-  ( ( ( ph  /\  (
( N  +  1 )  e.  ZZ  /\  k  e.  ZZ  /\  ( N  +  1 )  <_  k ) )  /\  ( F `  k )  <  ( F `  N )
)  ->  ( F `  k )  e.  RR+ )
5352rpred 9698 . . . . . . . 8  |-  ( ( ( ph  /\  (
( N  +  1 )  e.  ZZ  /\  k  e.  ZZ  /\  ( N  +  1 )  <_  k ) )  /\  ( F `  k )  <  ( F `  N )
)  ->  ( F `  k )  e.  RR )
541ad2antrr 488 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
( N  +  1 )  e.  ZZ  /\  k  e.  ZZ  /\  ( N  +  1 )  <_  k ) )  /\  ( F `  k )  <  ( F `  N )
)  ->  N  e.  NN )
5529, 54ffvelcdmd 5654 . . . . . . . . 9  |-  ( ( ( ph  /\  (
( N  +  1 )  e.  ZZ  /\  k  e.  ZZ  /\  ( N  +  1 )  <_  k ) )  /\  ( F `  k )  <  ( F `  N )
)  ->  ( F `  N )  e.  RR+ )
5655rpred 9698 . . . . . . . 8  |-  ( ( ( ph  /\  (
( N  +  1 )  e.  ZZ  /\  k  e.  ZZ  /\  ( N  +  1 )  <_  k ) )  /\  ( F `  k )  <  ( F `  N )
)  ->  ( F `  N )  e.  RR )
57 simpll 527 . . . . . . . . 9  |-  ( ( ( ph  /\  (
( N  +  1 )  e.  ZZ  /\  k  e.  ZZ  /\  ( N  +  1 )  <_  k ) )  /\  ( F `  k )  <  ( F `  N )
)  ->  ph )
5822, 23, 24resqrexlemdec 11022 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  NN )  ->  ( F `
 ( k  +  1 ) )  < 
( F `  k
) )
5957, 48, 58syl2anc 411 . . . . . . . 8  |-  ( ( ( ph  /\  (
( N  +  1 )  e.  ZZ  /\  k  e.  ZZ  /\  ( N  +  1 )  <_  k ) )  /\  ( F `  k )  <  ( F `  N )
)  ->  ( F `  ( k  +  1 ) )  <  ( F `  k )
)
60 simpr 110 . . . . . . . 8  |-  ( ( ( ph  /\  (
( N  +  1 )  e.  ZZ  /\  k  e.  ZZ  /\  ( N  +  1 )  <_  k ) )  /\  ( F `  k )  <  ( F `  N )
)  ->  ( F `  k )  <  ( F `  N )
)
6151, 53, 56, 59, 60lttrd 8085 . . . . . . 7  |-  ( ( ( ph  /\  (
( N  +  1 )  e.  ZZ  /\  k  e.  ZZ  /\  ( N  +  1 )  <_  k ) )  /\  ( F `  k )  <  ( F `  N )
)  ->  ( F `  ( k  +  1 ) )  <  ( F `  N )
)
6261ex 115 . . . . . 6  |-  ( (
ph  /\  ( ( N  +  1 )  e.  ZZ  /\  k  e.  ZZ  /\  ( N  +  1 )  <_ 
k ) )  -> 
( ( F `  k )  <  ( F `  N )  ->  ( F `  (
k  +  1 ) )  <  ( F `
 N ) ) )
6362expcom 116 . . . . 5  |-  ( ( ( N  +  1 )  e.  ZZ  /\  k  e.  ZZ  /\  ( N  +  1 )  <_  k )  -> 
( ph  ->  ( ( F `  k )  <  ( F `  N )  ->  ( F `  ( k  +  1 ) )  <  ( F `  N ) ) ) )
6463a2d 26 . . . 4  |-  ( ( ( N  +  1 )  e.  ZZ  /\  k  e.  ZZ  /\  ( N  +  1 )  <_  k )  -> 
( ( ph  ->  ( F `  k )  <  ( F `  N ) )  -> 
( ph  ->  ( F `
 ( k  +  1 ) )  < 
( F `  N
) ) ) )
6512, 15, 18, 21, 27, 64uzind 9366 . . 3  |-  ( ( ( N  +  1 )  e.  ZZ  /\  M  e.  ZZ  /\  ( N  +  1 )  <_  M )  -> 
( ph  ->  ( F `
 M )  < 
( F `  N
) ) )
663, 5, 9, 65syl3anc 1238 . 2  |-  ( ph  ->  ( ph  ->  ( F `  M )  <  ( F `  N
) ) )
6766pm2.43i 49 1  |-  ( ph  ->  ( F `  M
)  <  ( F `  N ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 978    = wceq 1353    e. wcel 2148   {csn 3594   class class class wbr 4005    X. cxp 4626   -->wf 5214   ` cfv 5218  (class class class)co 5877    e. cmpo 5879   RRcr 7812   0cc0 7813   1c1 7814    + caddc 7816    < clt 7994    <_ cle 7995    / cdiv 8631   NNcn 8921   2c2 8972   ZZcz 9255   RR+crp 9655    seqcseq 10447
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-iinf 4589  ax-cnex 7904  ax-resscn 7905  ax-1cn 7906  ax-1re 7907  ax-icn 7908  ax-addcl 7909  ax-addrcl 7910  ax-mulcl 7911  ax-mulrcl 7912  ax-addcom 7913  ax-mulcom 7914  ax-addass 7915  ax-mulass 7916  ax-distr 7917  ax-i2m1 7918  ax-0lt1 7919  ax-1rid 7920  ax-0id 7921  ax-rnegex 7922  ax-precex 7923  ax-cnre 7924  ax-pre-ltirr 7925  ax-pre-ltwlin 7926  ax-pre-lttrn 7927  ax-pre-apti 7928  ax-pre-ltadd 7929  ax-pre-mulgt0 7930  ax-pre-mulext 7931
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-if 3537  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-tr 4104  df-id 4295  df-po 4298  df-iso 4299  df-iord 4368  df-on 4370  df-ilim 4371  df-suc 4373  df-iom 4592  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-riota 5833  df-ov 5880  df-oprab 5881  df-mpo 5882  df-1st 6143  df-2nd 6144  df-recs 6308  df-frec 6394  df-pnf 7996  df-mnf 7997  df-xr 7998  df-ltxr 7999  df-le 8000  df-sub 8132  df-neg 8133  df-reap 8534  df-ap 8541  df-div 8632  df-inn 8922  df-2 8980  df-3 8981  df-4 8982  df-n0 9179  df-z 9256  df-uz 9531  df-rp 9656  df-seqfrec 10448  df-exp 10522
This theorem is referenced by:  resqrexlemnm  11029  resqrexlemcvg  11030  resqrexlemoverl  11032  resqrexlemglsq  11033
  Copyright terms: Public domain W3C validator