ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  disjsnxp Unicode version

Theorem disjsnxp 6292
Description: The sets in the cartesian product of singletons with other sets, are disjoint. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
Assertion
Ref Expression
disjsnxp  |- Disj  j  e.  A  ( { j }  X.  B )
Distinct variable group:    A, j
Allowed substitution hint:    B( j)

Proof of Theorem disjsnxp
StepHypRef Expression
1 sndisj 4026 . . . 4  |- Disj  j  e.  A  { j }
21a1i 9 . . 3  |-  ( T. 
-> Disj  j  e.  A  {
j } )
32disjxp1 6291 . 2  |-  ( T. 
-> Disj  j  e.  A  ( { j }  X.  B ) )
43mptru 1373 1  |- Disj  j  e.  A  ( { j }  X.  B )
Colors of variables: wff set class
Syntax hints:   T. wtru 1365   {csn 3619  Disj wdisj 4007    X. cxp 4658
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-rmo 2480  df-v 2762  df-sbc 2987  df-csb 3082  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-disj 4008  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-fo 5261  df-fv 5263  df-1st 6195
This theorem is referenced by:  fsum2dlemstep  11580  fisumcom2  11584  fprod2dlemstep  11768  fprodcom2fi  11772
  Copyright terms: Public domain W3C validator