ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  disjsnxp Unicode version

Theorem disjsnxp 6238
Description: The sets in the cartesian product of singletons with other sets, are disjoint. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
Assertion
Ref Expression
disjsnxp  |- Disj  j  e.  A  ( { j }  X.  B )
Distinct variable group:    A, j
Allowed substitution hint:    B( j)

Proof of Theorem disjsnxp
StepHypRef Expression
1 sndisj 4000 . . . 4  |- Disj  j  e.  A  { j }
21a1i 9 . . 3  |-  ( T. 
-> Disj  j  e.  A  {
j } )
32disjxp1 6237 . 2  |-  ( T. 
-> Disj  j  e.  A  ( { j }  X.  B ) )
43mptru 1362 1  |- Disj  j  e.  A  ( { j }  X.  B )
Colors of variables: wff set class
Syntax hints:   T. wtru 1354   {csn 3593  Disj wdisj 3981    X. cxp 4625
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4122  ax-pow 4175  ax-pr 4210  ax-un 4434
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-rmo 2463  df-v 2740  df-sbc 2964  df-csb 3059  df-un 3134  df-in 3136  df-ss 3143  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-disj 3982  df-br 4005  df-opab 4066  df-mpt 4067  df-id 4294  df-xp 4633  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-rn 4638  df-iota 5179  df-fun 5219  df-fn 5220  df-f 5221  df-fo 5223  df-fv 5225  df-1st 6141
This theorem is referenced by:  fsum2dlemstep  11442  fisumcom2  11446  fprod2dlemstep  11630  fprodcom2fi  11634
  Copyright terms: Public domain W3C validator