ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  disjsnxp Unicode version

Theorem disjsnxp 6205
Description: The sets in the cartesian product of singletons with other sets, are disjoint. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
Assertion
Ref Expression
disjsnxp  |- Disj  j  e.  A  ( { j }  X.  B )
Distinct variable group:    A, j
Allowed substitution hint:    B( j)

Proof of Theorem disjsnxp
StepHypRef Expression
1 sndisj 3978 . . . 4  |- Disj  j  e.  A  { j }
21a1i 9 . . 3  |-  ( T. 
-> Disj  j  e.  A  {
j } )
32disjxp1 6204 . 2  |-  ( T. 
-> Disj  j  e.  A  ( { j }  X.  B ) )
43mptru 1352 1  |- Disj  j  e.  A  ( { j }  X.  B )
Colors of variables: wff set class
Syntax hints:   T. wtru 1344   {csn 3576  Disj wdisj 3959    X. cxp 4602
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-rmo 2452  df-v 2728  df-sbc 2952  df-csb 3046  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-disj 3960  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-fo 5194  df-fv 5196  df-1st 6108
This theorem is referenced by:  fsum2dlemstep  11375  fisumcom2  11379  fprod2dlemstep  11563  fprodcom2fi  11567
  Copyright terms: Public domain W3C validator