ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  disjsnxp Unicode version

Theorem disjsnxp 6336
Description: The sets in the cartesian product of singletons with other sets, are disjoint. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
Assertion
Ref Expression
disjsnxp  |- Disj  j  e.  A  ( { j }  X.  B )
Distinct variable group:    A, j
Allowed substitution hint:    B( j)

Proof of Theorem disjsnxp
StepHypRef Expression
1 sndisj 4047 . . . 4  |- Disj  j  e.  A  { j }
21a1i 9 . . 3  |-  ( T. 
-> Disj  j  e.  A  {
j } )
32disjxp1 6335 . 2  |-  ( T. 
-> Disj  j  e.  A  ( { j }  X.  B ) )
43mptru 1382 1  |- Disj  j  e.  A  ( { j }  X.  B )
Colors of variables: wff set class
Syntax hints:   T. wtru 1374   {csn 3638  Disj wdisj 4027    X. cxp 4681
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4170  ax-pow 4226  ax-pr 4261  ax-un 4488
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-rmo 2493  df-v 2775  df-sbc 3003  df-csb 3098  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-disj 4028  df-br 4052  df-opab 4114  df-mpt 4115  df-id 4348  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-iota 5241  df-fun 5282  df-fn 5283  df-f 5284  df-fo 5286  df-fv 5288  df-1st 6239
This theorem is referenced by:  fsum2dlemstep  11820  fisumcom2  11824  fprod2dlemstep  12008  fprodcom2fi  12012
  Copyright terms: Public domain W3C validator