Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > disjsnxp | Unicode version |
Description: The sets in the cartesian product of singletons with other sets, are disjoint. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
Ref | Expression |
---|---|
disjsnxp | Disj |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sndisj 3978 | . . . 4 Disj | |
2 | 1 | a1i 9 | . . 3 Disj |
3 | 2 | disjxp1 6204 | . 2 Disj |
4 | 3 | mptru 1352 | 1 Disj |
Colors of variables: wff set class |
Syntax hints: wtru 1344 csn 3576 Disj wdisj 3959 cxp 4602 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-rmo 2452 df-v 2728 df-sbc 2952 df-csb 3046 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-disj 3960 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-fo 5194 df-fv 5196 df-1st 6108 |
This theorem is referenced by: fsum2dlemstep 11375 fisumcom2 11379 fprod2dlemstep 11563 fprodcom2fi 11567 |
Copyright terms: Public domain | W3C validator |