ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  disjsnxp Unicode version

Theorem disjsnxp 6381
Description: The sets in the cartesian product of singletons with other sets, are disjoint. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
Assertion
Ref Expression
disjsnxp  |- Disj  j  e.  A  ( { j }  X.  B )
Distinct variable group:    A, j
Allowed substitution hint:    B( j)

Proof of Theorem disjsnxp
StepHypRef Expression
1 sndisj 4078 . . . 4  |- Disj  j  e.  A  { j }
21a1i 9 . . 3  |-  ( T. 
-> Disj  j  e.  A  {
j } )
32disjxp1 6380 . 2  |-  ( T. 
-> Disj  j  e.  A  ( { j }  X.  B ) )
43mptru 1404 1  |- Disj  j  e.  A  ( { j }  X.  B )
Colors of variables: wff set class
Syntax hints:   T. wtru 1396   {csn 3666  Disj wdisj 4058    X. cxp 4716
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-rmo 2516  df-v 2801  df-sbc 3029  df-csb 3125  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-disj 4059  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-fo 5323  df-fv 5325  df-1st 6284
This theorem is referenced by:  fsum2dlemstep  11940  fisumcom2  11944  fprod2dlemstep  12128  fprodcom2fi  12132
  Copyright terms: Public domain W3C validator