Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > diffitest | Unicode version |
Description: If subtracting any set from a finite set gives a finite set, any proposition of the form is decidable. This is not a proof of full excluded middle, but it is close enough to show we won't be able to prove . (Contributed by Jim Kingdon, 8-Sep-2021.) |
Ref | Expression |
---|---|
diffitest.1 |
Ref | Expression |
---|---|
diffitest |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ex 4116 | . . . . . 6 | |
2 | snfig 6792 | . . . . . 6 | |
3 | 1, 2 | ax-mp 5 | . . . . 5 |
4 | diffitest.1 | . . . . 5 | |
5 | difeq1 3238 | . . . . . . . 8 | |
6 | 5 | eleq1d 2239 | . . . . . . 7 |
7 | 6 | albidv 1817 | . . . . . 6 |
8 | 7 | rspcv 2830 | . . . . 5 |
9 | 3, 4, 8 | mp2 16 | . . . 4 |
10 | rabexg 4132 | . . . . . 6 | |
11 | 3, 10 | ax-mp 5 | . . . . 5 |
12 | difeq2 3239 | . . . . . 6 | |
13 | 12 | eleq1d 2239 | . . . . 5 |
14 | 11, 13 | spcv 2824 | . . . 4 |
15 | 9, 14 | ax-mp 5 | . . 3 |
16 | isfi 6739 | . . 3 | |
17 | 15, 16 | mpbi 144 | . 2 |
18 | 0elnn 4603 | . . . . 5 | |
19 | breq2 3993 | . . . . . . . . . 10 | |
20 | en0 6773 | . . . . . . . . . 10 | |
21 | 19, 20 | bitrdi 195 | . . . . . . . . 9 |
22 | 21 | biimpac 296 | . . . . . . . 8 |
23 | rabeq0 3444 | . . . . . . . . 9 | |
24 | notrab 3404 | . . . . . . . . . 10 | |
25 | 24 | eqeq1i 2178 | . . . . . . . . 9 |
26 | 1 | snm 3703 | . . . . . . . . . 10 |
27 | r19.3rmv 3505 | . . . . . . . . . 10 | |
28 | 26, 27 | ax-mp 5 | . . . . . . . . 9 |
29 | 23, 25, 28 | 3bitr4i 211 | . . . . . . . 8 |
30 | 22, 29 | sylib 121 | . . . . . . 7 |
31 | 30 | olcd 729 | . . . . . 6 |
32 | ensym 6759 | . . . . . . . 8 | |
33 | elex2 2746 | . . . . . . . 8 | |
34 | enm 6798 | . . . . . . . 8 | |
35 | 32, 33, 34 | syl2an 287 | . . . . . . 7 |
36 | biidd 171 | . . . . . . . . . . . 12 | |
37 | 36 | elrab 2886 | . . . . . . . . . . 11 |
38 | 37 | simprbi 273 | . . . . . . . . . 10 |
39 | 38 | orcd 728 | . . . . . . . . 9 |
40 | 39, 24 | eleq2s 2265 | . . . . . . . 8 |
41 | 40 | exlimiv 1591 | . . . . . . 7 |
42 | 35, 41 | syl 14 | . . . . . 6 |
43 | 31, 42 | jaodan 792 | . . . . 5 |
44 | 18, 43 | sylan2 284 | . . . 4 |
45 | 44 | ancoms 266 | . . 3 |
46 | 45 | rexlimiva 2582 | . 2 |
47 | 17, 46 | ax-mp 5 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wa 103 wb 104 wo 703 wal 1346 wceq 1348 wex 1485 wcel 2141 wral 2448 wrex 2449 crab 2452 cvv 2730 cdif 3118 c0 3414 csn 3583 class class class wbr 3989 com 4574 cen 6716 cfn 6718 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-iinf 4572 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-rab 2457 df-v 2732 df-sbc 2956 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-br 3990 df-opab 4051 df-id 4278 df-suc 4356 df-iom 4575 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-1o 6395 df-er 6513 df-en 6719 df-fin 6721 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |