ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  diffitest Unicode version

Theorem diffitest 6583
Description: If subtracting any set from a finite set gives a finite set, any proposition of the form  -.  ph is decidable. This is not a proof of full excluded middle, but it is close enough to show we won't be able to prove  A  e.  Fin  ->  ( A  \  B
)  e.  Fin. (Contributed by Jim Kingdon, 8-Sep-2021.)
Hypothesis
Ref Expression
diffitest.1  |-  A. a  e.  Fin  A. b ( a  \  b )  e.  Fin
Assertion
Ref Expression
diffitest  |-  ( -. 
ph  \/  -.  -.  ph )
Distinct variable groups:    a, b    ph, b
Allowed substitution hint:    ph( a)

Proof of Theorem diffitest
Dummy variables  x  n  w  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0ex 3958 . . . . . 6  |-  (/)  e.  _V
2 snfig 6511 . . . . . 6  |-  ( (/)  e.  _V  ->  { (/) }  e.  Fin )
31, 2ax-mp 7 . . . . 5  |-  { (/) }  e.  Fin
4 diffitest.1 . . . . 5  |-  A. a  e.  Fin  A. b ( a  \  b )  e.  Fin
5 difeq1 3109 . . . . . . . 8  |-  ( a  =  { (/) }  ->  ( a  \  b )  =  ( { (/) } 
\  b ) )
65eleq1d 2156 . . . . . . 7  |-  ( a  =  { (/) }  ->  ( ( a  \  b
)  e.  Fin  <->  ( { (/)
}  \  b )  e.  Fin ) )
76albidv 1752 . . . . . 6  |-  ( a  =  { (/) }  ->  ( A. b ( a 
\  b )  e. 
Fin 
<-> 
A. b ( {
(/) }  \  b
)  e.  Fin )
)
87rspcv 2718 . . . . 5  |-  ( {
(/) }  e.  Fin  ->  ( A. a  e. 
Fin  A. b ( a 
\  b )  e. 
Fin  ->  A. b ( {
(/) }  \  b
)  e.  Fin )
)
93, 4, 8mp2 16 . . . 4  |-  A. b
( { (/) }  \ 
b )  e.  Fin
10 rabexg 3974 . . . . . 6  |-  ( {
(/) }  e.  Fin  ->  { x  e.  { (/)
}  |  ph }  e.  _V )
113, 10ax-mp 7 . . . . 5  |-  { x  e.  { (/) }  |  ph }  e.  _V
12 difeq2 3110 . . . . . 6  |-  ( b  =  { x  e. 
{ (/) }  |  ph }  ->  ( { (/) } 
\  b )  =  ( { (/) }  \  { x  e.  { (/) }  |  ph } ) )
1312eleq1d 2156 . . . . 5  |-  ( b  =  { x  e. 
{ (/) }  |  ph }  ->  ( ( {
(/) }  \  b
)  e.  Fin  <->  ( { (/)
}  \  { x  e.  { (/) }  |  ph } )  e.  Fin ) )
1411, 13spcv 2712 . . . 4  |-  ( A. b ( { (/) } 
\  b )  e. 
Fin  ->  ( { (/) } 
\  { x  e. 
{ (/) }  |  ph } )  e.  Fin )
159, 14ax-mp 7 . . 3  |-  ( {
(/) }  \  { x  e.  { (/) }  |  ph } )  e.  Fin
16 isfi 6458 . . 3  |-  ( ( { (/) }  \  {
x  e.  { (/) }  |  ph } )  e.  Fin  <->  E. n  e.  om  ( { (/) } 
\  { x  e. 
{ (/) }  |  ph } )  ~~  n
)
1715, 16mpbi 143 . 2  |-  E. n  e.  om  ( { (/) } 
\  { x  e. 
{ (/) }  |  ph } )  ~~  n
18 0elnn 4422 . . . . 5  |-  ( n  e.  om  ->  (
n  =  (/)  \/  (/)  e.  n
) )
19 breq2 3841 . . . . . . . . . 10  |-  ( n  =  (/)  ->  ( ( { (/) }  \  {
x  e.  { (/) }  |  ph } ) 
~~  n  <->  ( { (/)
}  \  { x  e.  { (/) }  |  ph } )  ~~  (/) ) )
20 en0 6492 . . . . . . . . . 10  |-  ( ( { (/) }  \  {
x  e.  { (/) }  |  ph } ) 
~~  (/)  <->  ( { (/) } 
\  { x  e. 
{ (/) }  |  ph } )  =  (/) )
2119, 20syl6bb 194 . . . . . . . . 9  |-  ( n  =  (/)  ->  ( ( { (/) }  \  {
x  e.  { (/) }  |  ph } ) 
~~  n  <->  ( { (/)
}  \  { x  e.  { (/) }  |  ph } )  =  (/) ) )
2221biimpac 292 . . . . . . . 8  |-  ( ( ( { (/) }  \  { x  e.  { (/) }  |  ph } ) 
~~  n  /\  n  =  (/) )  ->  ( { (/) }  \  {
x  e.  { (/) }  |  ph } )  =  (/) )
23 rabeq0 3310 . . . . . . . . 9  |-  ( { x  e.  { (/) }  |  -.  ph }  =  (/)  <->  A. x  e.  { (/)
}  -.  -.  ph )
24 notrab 3274 . . . . . . . . . 10  |-  ( {
(/) }  \  { x  e.  { (/) }  |  ph } )  =  {
x  e.  { (/) }  |  -.  ph }
2524eqeq1i 2095 . . . . . . . . 9  |-  ( ( { (/) }  \  {
x  e.  { (/) }  |  ph } )  =  (/)  <->  { x  e.  { (/)
}  |  -.  ph }  =  (/) )
261snm 3555 . . . . . . . . . 10  |-  E. w  w  e.  { (/) }
27 r19.3rmv 3368 . . . . . . . . . 10  |-  ( E. w  w  e.  { (/)
}  ->  ( -.  -.  ph  <->  A. x  e.  { (/)
}  -.  -.  ph ) )
2826, 27ax-mp 7 . . . . . . . . 9  |-  ( -. 
-.  ph  <->  A. x  e.  { (/)
}  -.  -.  ph )
2923, 25, 283bitr4i 210 . . . . . . . 8  |-  ( ( { (/) }  \  {
x  e.  { (/) }  |  ph } )  =  (/)  <->  -.  -.  ph )
3022, 29sylib 120 . . . . . . 7  |-  ( ( ( { (/) }  \  { x  e.  { (/) }  |  ph } ) 
~~  n  /\  n  =  (/) )  ->  -.  -.  ph )
3130olcd 688 . . . . . 6  |-  ( ( ( { (/) }  \  { x  e.  { (/) }  |  ph } ) 
~~  n  /\  n  =  (/) )  ->  ( -.  ph  \/  -.  -.  ph ) )
32 ensym 6478 . . . . . . . 8  |-  ( ( { (/) }  \  {
x  e.  { (/) }  |  ph } ) 
~~  n  ->  n  ~~  ( { (/) }  \  { x  e.  { (/) }  |  ph } ) )
33 elex2 2635 . . . . . . . 8  |-  ( (/)  e.  n  ->  E. w  w  e.  n )
34 enm 6516 . . . . . . . 8  |-  ( ( n  ~~  ( {
(/) }  \  { x  e.  { (/) }  |  ph } )  /\  E. w  w  e.  n
)  ->  E. y 
y  e.  ( {
(/) }  \  { x  e.  { (/) }  |  ph } ) )
3532, 33, 34syl2an 283 . . . . . . 7  |-  ( ( ( { (/) }  \  { x  e.  { (/) }  |  ph } ) 
~~  n  /\  (/)  e.  n
)  ->  E. y 
y  e.  ( {
(/) }  \  { x  e.  { (/) }  |  ph } ) )
36 biidd 170 . . . . . . . . . . . 12  |-  ( x  =  y  ->  ( -.  ph  <->  -.  ph ) )
3736elrab 2769 . . . . . . . . . . 11  |-  ( y  e.  { x  e. 
{ (/) }  |  -.  ph }  <->  ( y  e. 
{ (/) }  /\  -.  ph ) )
3837simprbi 269 . . . . . . . . . 10  |-  ( y  e.  { x  e. 
{ (/) }  |  -.  ph }  ->  -.  ph )
3938orcd 687 . . . . . . . . 9  |-  ( y  e.  { x  e. 
{ (/) }  |  -.  ph }  ->  ( -.  ph  \/  -.  -.  ph ) )
4039, 24eleq2s 2182 . . . . . . . 8  |-  ( y  e.  ( { (/) } 
\  { x  e. 
{ (/) }  |  ph } )  ->  ( -.  ph  \/  -.  -.  ph ) )
4140exlimiv 1534 . . . . . . 7  |-  ( E. y  y  e.  ( { (/) }  \  {
x  e.  { (/) }  |  ph } )  ->  ( -.  ph  \/  -.  -.  ph )
)
4235, 41syl 14 . . . . . 6  |-  ( ( ( { (/) }  \  { x  e.  { (/) }  |  ph } ) 
~~  n  /\  (/)  e.  n
)  ->  ( -.  ph  \/  -.  -.  ph ) )
4331, 42jaodan 746 . . . . 5  |-  ( ( ( { (/) }  \  { x  e.  { (/) }  |  ph } ) 
~~  n  /\  (
n  =  (/)  \/  (/)  e.  n
) )  ->  ( -.  ph  \/  -.  -.  ph ) )
4418, 43sylan2 280 . . . 4  |-  ( ( ( { (/) }  \  { x  e.  { (/) }  |  ph } ) 
~~  n  /\  n  e.  om )  ->  ( -.  ph  \/  -.  -.  ph ) )
4544ancoms 264 . . 3  |-  ( ( n  e.  om  /\  ( { (/) }  \  {
x  e.  { (/) }  |  ph } ) 
~~  n )  -> 
( -.  ph  \/  -.  -.  ph ) )
4645rexlimiva 2484 . 2  |-  ( E. n  e.  om  ( { (/) }  \  {
x  e.  { (/) }  |  ph } ) 
~~  n  ->  ( -.  ph  \/  -.  -.  ph ) )
4717, 46ax-mp 7 1  |-  ( -. 
ph  \/  -.  -.  ph )
Colors of variables: wff set class
Syntax hints:   -. wn 3    /\ wa 102    <-> wb 103    \/ wo 664   A.wal 1287    = wceq 1289   E.wex 1426    e. wcel 1438   A.wral 2359   E.wrex 2360   {crab 2363   _Vcvv 2619    \ cdif 2994   (/)c0 3284   {csn 3441   class class class wbr 3837   omcom 4395    ~~ cen 6435   Fincfn 6437
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-13 1449  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-sep 3949  ax-nul 3957  ax-pow 4001  ax-pr 4027  ax-un 4251  ax-iinf 4393
This theorem depends on definitions:  df-bi 115  df-3an 926  df-tru 1292  df-fal 1295  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ral 2364  df-rex 2365  df-rab 2368  df-v 2621  df-sbc 2839  df-dif 2999  df-un 3001  df-in 3003  df-ss 3010  df-nul 3285  df-pw 3427  df-sn 3447  df-pr 3448  df-op 3450  df-uni 3649  df-int 3684  df-br 3838  df-opab 3892  df-id 4111  df-suc 4189  df-iom 4396  df-xp 4434  df-rel 4435  df-cnv 4436  df-co 4437  df-dm 4438  df-rn 4439  df-res 4440  df-ima 4441  df-iota 4967  df-fun 5004  df-fn 5005  df-f 5006  df-f1 5007  df-fo 5008  df-f1o 5009  df-fv 5010  df-1o 6163  df-er 6272  df-en 6438  df-fin 6440
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator