| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > diffitest | Unicode version | ||
| Description: If subtracting any set
from a finite set gives a finite set, any
proposition of the form |
| Ref | Expression |
|---|---|
| diffitest.1 |
|
| Ref | Expression |
|---|---|
| diffitest |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ex 4171 |
. . . . . 6
| |
| 2 | snfig 6906 |
. . . . . 6
| |
| 3 | 1, 2 | ax-mp 5 |
. . . . 5
|
| 4 | diffitest.1 |
. . . . 5
| |
| 5 | difeq1 3284 |
. . . . . . . 8
| |
| 6 | 5 | eleq1d 2274 |
. . . . . . 7
|
| 7 | 6 | albidv 1847 |
. . . . . 6
|
| 8 | 7 | rspcv 2873 |
. . . . 5
|
| 9 | 3, 4, 8 | mp2 16 |
. . . 4
|
| 10 | rabexg 4187 |
. . . . . 6
| |
| 11 | 3, 10 | ax-mp 5 |
. . . . 5
|
| 12 | difeq2 3285 |
. . . . . 6
| |
| 13 | 12 | eleq1d 2274 |
. . . . 5
|
| 14 | 11, 13 | spcv 2867 |
. . . 4
|
| 15 | 9, 14 | ax-mp 5 |
. . 3
|
| 16 | isfi 6852 |
. . 3
| |
| 17 | 15, 16 | mpbi 145 |
. 2
|
| 18 | 0elnn 4667 |
. . . . 5
| |
| 19 | breq2 4048 |
. . . . . . . . . 10
| |
| 20 | en0 6887 |
. . . . . . . . . 10
| |
| 21 | 19, 20 | bitrdi 196 |
. . . . . . . . 9
|
| 22 | 21 | biimpac 298 |
. . . . . . . 8
|
| 23 | rabeq0 3490 |
. . . . . . . . 9
| |
| 24 | notrab 3450 |
. . . . . . . . . 10
| |
| 25 | 24 | eqeq1i 2213 |
. . . . . . . . 9
|
| 26 | 1 | snm 3753 |
. . . . . . . . . 10
|
| 27 | r19.3rmv 3551 |
. . . . . . . . . 10
| |
| 28 | 26, 27 | ax-mp 5 |
. . . . . . . . 9
|
| 29 | 23, 25, 28 | 3bitr4i 212 |
. . . . . . . 8
|
| 30 | 22, 29 | sylib 122 |
. . . . . . 7
|
| 31 | 30 | olcd 736 |
. . . . . 6
|
| 32 | ensym 6873 |
. . . . . . . 8
| |
| 33 | elex2 2788 |
. . . . . . . 8
| |
| 34 | enm 6915 |
. . . . . . . 8
| |
| 35 | 32, 33, 34 | syl2an 289 |
. . . . . . 7
|
| 36 | biidd 172 |
. . . . . . . . . . . 12
| |
| 37 | 36 | elrab 2929 |
. . . . . . . . . . 11
|
| 38 | 37 | simprbi 275 |
. . . . . . . . . 10
|
| 39 | 38 | orcd 735 |
. . . . . . . . 9
|
| 40 | 39, 24 | eleq2s 2300 |
. . . . . . . 8
|
| 41 | 40 | exlimiv 1621 |
. . . . . . 7
|
| 42 | 35, 41 | syl 14 |
. . . . . 6
|
| 43 | 31, 42 | jaodan 799 |
. . . . 5
|
| 44 | 18, 43 | sylan2 286 |
. . . 4
|
| 45 | 44 | ancoms 268 |
. . 3
|
| 46 | 45 | rexlimiva 2618 |
. 2
|
| 47 | 17, 46 | ax-mp 5 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-nul 4170 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-iinf 4636 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-rab 2493 df-v 2774 df-sbc 2999 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-br 4045 df-opab 4106 df-id 4340 df-suc 4418 df-iom 4639 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-ima 4688 df-iota 5232 df-fun 5273 df-fn 5274 df-f 5275 df-f1 5276 df-fo 5277 df-f1o 5278 df-fv 5279 df-1o 6502 df-er 6620 df-en 6828 df-fin 6830 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |