Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > diffitest | Unicode version |
Description: If subtracting any set from a finite set gives a finite set, any proposition of the form is decidable. This is not a proof of full excluded middle, but it is close enough to show we won't be able to prove . (Contributed by Jim Kingdon, 8-Sep-2021.) |
Ref | Expression |
---|---|
diffitest.1 |
Ref | Expression |
---|---|
diffitest |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ex 4109 | . . . . . 6 | |
2 | snfig 6780 | . . . . . 6 | |
3 | 1, 2 | ax-mp 5 | . . . . 5 |
4 | diffitest.1 | . . . . 5 | |
5 | difeq1 3233 | . . . . . . . 8 | |
6 | 5 | eleq1d 2235 | . . . . . . 7 |
7 | 6 | albidv 1812 | . . . . . 6 |
8 | 7 | rspcv 2826 | . . . . 5 |
9 | 3, 4, 8 | mp2 16 | . . . 4 |
10 | rabexg 4125 | . . . . . 6 | |
11 | 3, 10 | ax-mp 5 | . . . . 5 |
12 | difeq2 3234 | . . . . . 6 | |
13 | 12 | eleq1d 2235 | . . . . 5 |
14 | 11, 13 | spcv 2820 | . . . 4 |
15 | 9, 14 | ax-mp 5 | . . 3 |
16 | isfi 6727 | . . 3 | |
17 | 15, 16 | mpbi 144 | . 2 |
18 | 0elnn 4596 | . . . . 5 | |
19 | breq2 3986 | . . . . . . . . . 10 | |
20 | en0 6761 | . . . . . . . . . 10 | |
21 | 19, 20 | bitrdi 195 | . . . . . . . . 9 |
22 | 21 | biimpac 296 | . . . . . . . 8 |
23 | rabeq0 3438 | . . . . . . . . 9 | |
24 | notrab 3399 | . . . . . . . . . 10 | |
25 | 24 | eqeq1i 2173 | . . . . . . . . 9 |
26 | 1 | snm 3696 | . . . . . . . . . 10 |
27 | r19.3rmv 3499 | . . . . . . . . . 10 | |
28 | 26, 27 | ax-mp 5 | . . . . . . . . 9 |
29 | 23, 25, 28 | 3bitr4i 211 | . . . . . . . 8 |
30 | 22, 29 | sylib 121 | . . . . . . 7 |
31 | 30 | olcd 724 | . . . . . 6 |
32 | ensym 6747 | . . . . . . . 8 | |
33 | elex2 2742 | . . . . . . . 8 | |
34 | enm 6786 | . . . . . . . 8 | |
35 | 32, 33, 34 | syl2an 287 | . . . . . . 7 |
36 | biidd 171 | . . . . . . . . . . . 12 | |
37 | 36 | elrab 2882 | . . . . . . . . . . 11 |
38 | 37 | simprbi 273 | . . . . . . . . . 10 |
39 | 38 | orcd 723 | . . . . . . . . 9 |
40 | 39, 24 | eleq2s 2261 | . . . . . . . 8 |
41 | 40 | exlimiv 1586 | . . . . . . 7 |
42 | 35, 41 | syl 14 | . . . . . 6 |
43 | 31, 42 | jaodan 787 | . . . . 5 |
44 | 18, 43 | sylan2 284 | . . . 4 |
45 | 44 | ancoms 266 | . . 3 |
46 | 45 | rexlimiva 2578 | . 2 |
47 | 17, 46 | ax-mp 5 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wa 103 wb 104 wo 698 wal 1341 wceq 1343 wex 1480 wcel 2136 wral 2444 wrex 2445 crab 2448 cvv 2726 cdif 3113 c0 3409 csn 3576 class class class wbr 3982 com 4567 cen 6704 cfn 6706 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-iinf 4565 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-sbc 2952 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-br 3983 df-opab 4044 df-id 4271 df-suc 4349 df-iom 4568 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-1o 6384 df-er 6501 df-en 6707 df-fin 6709 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |