| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > diffitest | Unicode version | ||
| Description: If subtracting any set
from a finite set gives a finite set, any
       proposition of the form  | 
| Ref | Expression | 
|---|---|
| diffitest.1 | 
 | 
| Ref | Expression | 
|---|---|
| diffitest | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | 0ex 4160 | 
. . . . . 6
 | |
| 2 | snfig 6873 | 
. . . . . 6
 | |
| 3 | 1, 2 | ax-mp 5 | 
. . . . 5
 | 
| 4 | diffitest.1 | 
. . . . 5
 | |
| 5 | difeq1 3274 | 
. . . . . . . 8
 | |
| 6 | 5 | eleq1d 2265 | 
. . . . . . 7
 | 
| 7 | 6 | albidv 1838 | 
. . . . . 6
 | 
| 8 | 7 | rspcv 2864 | 
. . . . 5
 | 
| 9 | 3, 4, 8 | mp2 16 | 
. . . 4
 | 
| 10 | rabexg 4176 | 
. . . . . 6
 | |
| 11 | 3, 10 | ax-mp 5 | 
. . . . 5
 | 
| 12 | difeq2 3275 | 
. . . . . 6
 | |
| 13 | 12 | eleq1d 2265 | 
. . . . 5
 | 
| 14 | 11, 13 | spcv 2858 | 
. . . 4
 | 
| 15 | 9, 14 | ax-mp 5 | 
. . 3
 | 
| 16 | isfi 6820 | 
. . 3
 | |
| 17 | 15, 16 | mpbi 145 | 
. 2
 | 
| 18 | 0elnn 4655 | 
. . . . 5
 | |
| 19 | breq2 4037 | 
. . . . . . . . . 10
 | |
| 20 | en0 6854 | 
. . . . . . . . . 10
 | |
| 21 | 19, 20 | bitrdi 196 | 
. . . . . . . . 9
 | 
| 22 | 21 | biimpac 298 | 
. . . . . . . 8
 | 
| 23 | rabeq0 3480 | 
. . . . . . . . 9
 | |
| 24 | notrab 3440 | 
. . . . . . . . . 10
 | |
| 25 | 24 | eqeq1i 2204 | 
. . . . . . . . 9
 | 
| 26 | 1 | snm 3742 | 
. . . . . . . . . 10
 | 
| 27 | r19.3rmv 3541 | 
. . . . . . . . . 10
 | |
| 28 | 26, 27 | ax-mp 5 | 
. . . . . . . . 9
 | 
| 29 | 23, 25, 28 | 3bitr4i 212 | 
. . . . . . . 8
 | 
| 30 | 22, 29 | sylib 122 | 
. . . . . . 7
 | 
| 31 | 30 | olcd 735 | 
. . . . . 6
 | 
| 32 | ensym 6840 | 
. . . . . . . 8
 | |
| 33 | elex2 2779 | 
. . . . . . . 8
 | |
| 34 | enm 6879 | 
. . . . . . . 8
 | |
| 35 | 32, 33, 34 | syl2an 289 | 
. . . . . . 7
 | 
| 36 | biidd 172 | 
. . . . . . . . . . . 12
 | |
| 37 | 36 | elrab 2920 | 
. . . . . . . . . . 11
 | 
| 38 | 37 | simprbi 275 | 
. . . . . . . . . 10
 | 
| 39 | 38 | orcd 734 | 
. . . . . . . . 9
 | 
| 40 | 39, 24 | eleq2s 2291 | 
. . . . . . . 8
 | 
| 41 | 40 | exlimiv 1612 | 
. . . . . . 7
 | 
| 42 | 35, 41 | syl 14 | 
. . . . . 6
 | 
| 43 | 31, 42 | jaodan 798 | 
. . . . 5
 | 
| 44 | 18, 43 | sylan2 286 | 
. . . 4
 | 
| 45 | 44 | ancoms 268 | 
. . 3
 | 
| 46 | 45 | rexlimiva 2609 | 
. 2
 | 
| 47 | 17, 46 | ax-mp 5 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:    | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-iinf 4624 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-br 4034 df-opab 4095 df-id 4328 df-suc 4406 df-iom 4627 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-1o 6474 df-er 6592 df-en 6800 df-fin 6802 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |