| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > diffitest | Unicode version | ||
| Description: If subtracting any set
from a finite set gives a finite set, any
proposition of the form |
| Ref | Expression |
|---|---|
| diffitest.1 |
|
| Ref | Expression |
|---|---|
| diffitest |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ex 4182 |
. . . . . 6
| |
| 2 | snfig 6925 |
. . . . . 6
| |
| 3 | 1, 2 | ax-mp 5 |
. . . . 5
|
| 4 | diffitest.1 |
. . . . 5
| |
| 5 | difeq1 3288 |
. . . . . . . 8
| |
| 6 | 5 | eleq1d 2275 |
. . . . . . 7
|
| 7 | 6 | albidv 1848 |
. . . . . 6
|
| 8 | 7 | rspcv 2877 |
. . . . 5
|
| 9 | 3, 4, 8 | mp2 16 |
. . . 4
|
| 10 | rabexg 4198 |
. . . . . 6
| |
| 11 | 3, 10 | ax-mp 5 |
. . . . 5
|
| 12 | difeq2 3289 |
. . . . . 6
| |
| 13 | 12 | eleq1d 2275 |
. . . . 5
|
| 14 | 11, 13 | spcv 2871 |
. . . 4
|
| 15 | 9, 14 | ax-mp 5 |
. . 3
|
| 16 | isfi 6870 |
. . 3
| |
| 17 | 15, 16 | mpbi 145 |
. 2
|
| 18 | 0elnn 4680 |
. . . . 5
| |
| 19 | breq2 4058 |
. . . . . . . . . 10
| |
| 20 | en0 6905 |
. . . . . . . . . 10
| |
| 21 | 19, 20 | bitrdi 196 |
. . . . . . . . 9
|
| 22 | 21 | biimpac 298 |
. . . . . . . 8
|
| 23 | rabeq0 3494 |
. . . . . . . . 9
| |
| 24 | notrab 3454 |
. . . . . . . . . 10
| |
| 25 | 24 | eqeq1i 2214 |
. . . . . . . . 9
|
| 26 | 1 | snm 3758 |
. . . . . . . . . 10
|
| 27 | r19.3rmv 3555 |
. . . . . . . . . 10
| |
| 28 | 26, 27 | ax-mp 5 |
. . . . . . . . 9
|
| 29 | 23, 25, 28 | 3bitr4i 212 |
. . . . . . . 8
|
| 30 | 22, 29 | sylib 122 |
. . . . . . 7
|
| 31 | 30 | olcd 736 |
. . . . . 6
|
| 32 | ensym 6891 |
. . . . . . . 8
| |
| 33 | elex2 2790 |
. . . . . . . 8
| |
| 34 | enm 6935 |
. . . . . . . 8
| |
| 35 | 32, 33, 34 | syl2an 289 |
. . . . . . 7
|
| 36 | biidd 172 |
. . . . . . . . . . . 12
| |
| 37 | 36 | elrab 2933 |
. . . . . . . . . . 11
|
| 38 | 37 | simprbi 275 |
. . . . . . . . . 10
|
| 39 | 38 | orcd 735 |
. . . . . . . . 9
|
| 40 | 39, 24 | eleq2s 2301 |
. . . . . . . 8
|
| 41 | 40 | exlimiv 1622 |
. . . . . . 7
|
| 42 | 35, 41 | syl 14 |
. . . . . 6
|
| 43 | 31, 42 | jaodan 799 |
. . . . 5
|
| 44 | 18, 43 | sylan2 286 |
. . . 4
|
| 45 | 44 | ancoms 268 |
. . 3
|
| 46 | 45 | rexlimiva 2619 |
. 2
|
| 47 | 17, 46 | ax-mp 5 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4173 ax-nul 4181 ax-pow 4229 ax-pr 4264 ax-un 4493 ax-iinf 4649 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-rab 2494 df-v 2775 df-sbc 3003 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3860 df-int 3895 df-br 4055 df-opab 4117 df-id 4353 df-suc 4431 df-iom 4652 df-xp 4694 df-rel 4695 df-cnv 4696 df-co 4697 df-dm 4698 df-rn 4699 df-res 4700 df-ima 4701 df-iota 5246 df-fun 5287 df-fn 5288 df-f 5289 df-f1 5290 df-fo 5291 df-f1o 5292 df-fv 5293 df-1o 6520 df-er 6638 df-en 6846 df-fin 6848 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |