ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exmidfodomrlemim Unicode version

Theorem exmidfodomrlemim 7057
Description: Excluded middle implies the existence of a mapping from any set onto any inhabited set that it dominates. Proposition 1.1 of [PradicBrown2022], p. 2. (Contributed by Jim Kingdon, 1-Jul-2022.)
Assertion
Ref Expression
exmidfodomrlemim  |-  (EXMID  ->  A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f  f : x -onto-> y ) )
Distinct variable groups:    x, f, z   
y, f, z

Proof of Theorem exmidfodomrlemim
Dummy variables  g  u  v  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 brdomi 6643 . . . . 5  |-  ( y  ~<_  x  ->  E. g 
g : y -1-1-> x
)
21ad2antll 482 . . . 4  |-  ( (EXMID  /\  ( E. z  z  e.  y  /\  y  ~<_  x ) )  ->  E. g  g :
y -1-1-> x )
3 df-f1 5128 . . . . . . . . . . . . . . . . 17  |-  ( g : y -1-1-> x  <->  ( g : y --> x  /\  Fun  `' g ) )
43simprbi 273 . . . . . . . . . . . . . . . 16  |-  ( g : y -1-1-> x  ->  Fun  `' g )
5 vex 2689 . . . . . . . . . . . . . . . . . 18  |-  z  e. 
_V
65fconst 5318 . . . . . . . . . . . . . . . . 17  |-  ( ( x  \  ran  g
)  X.  { z } ) : ( x  \  ran  g
) --> { z }
7 ffun 5275 . . . . . . . . . . . . . . . . 17  |-  ( ( ( x  \  ran  g )  X.  {
z } ) : ( x  \  ran  g ) --> { z }  ->  Fun  ( ( x  \  ran  g
)  X.  { z } ) )
86, 7ax-mp 5 . . . . . . . . . . . . . . . 16  |-  Fun  (
( x  \  ran  g )  X.  {
z } )
94, 8jctir 311 . . . . . . . . . . . . . . 15  |-  ( g : y -1-1-> x  -> 
( Fun  `' g  /\  Fun  ( ( x 
\  ran  g )  X.  { z } ) ) )
10 df-rn 4550 . . . . . . . . . . . . . . . . . 18  |-  ran  g  =  dom  `' g
1110eqcomi 2143 . . . . . . . . . . . . . . . . 17  |-  dom  `' g  =  ran  g
125snm 3643 . . . . . . . . . . . . . . . . . 18  |-  E. w  w  e.  { z }
13 dmxpm 4759 . . . . . . . . . . . . . . . . . 18  |-  ( E. w  w  e.  {
z }  ->  dom  ( ( x  \  ran  g )  X.  {
z } )  =  ( x  \  ran  g ) )
1412, 13ax-mp 5 . . . . . . . . . . . . . . . . 17  |-  dom  (
( x  \  ran  g )  X.  {
z } )  =  ( x  \  ran  g )
1511, 14ineq12i 3275 . . . . . . . . . . . . . . . 16  |-  ( dom  `' g  i^i  dom  (
( x  \  ran  g )  X.  {
z } ) )  =  ( ran  g  i^i  ( x  \  ran  g ) )
16 disjdif 3435 . . . . . . . . . . . . . . . 16  |-  ( ran  g  i^i  ( x 
\  ran  g )
)  =  (/)
1715, 16eqtri 2160 . . . . . . . . . . . . . . 15  |-  ( dom  `' g  i^i  dom  (
( x  \  ran  g )  X.  {
z } ) )  =  (/)
18 funun 5167 . . . . . . . . . . . . . . 15  |-  ( ( ( Fun  `' g  /\  Fun  ( ( x  \  ran  g
)  X.  { z } ) )  /\  ( dom  `' g  i^i 
dom  ( ( x 
\  ran  g )  X.  { z } ) )  =  (/) )  ->  Fun  ( `' g  u.  ( ( x  \  ran  g )  X.  {
z } ) ) )
199, 17, 18sylancl 409 . . . . . . . . . . . . . 14  |-  ( g : y -1-1-> x  ->  Fun  ( `' g  u.  ( ( x  \  ran  g )  X.  {
z } ) ) )
2019adantl 275 . . . . . . . . . . . . 13  |-  ( ( (EXMID 
/\  z  e.  y )  /\  g : y -1-1-> x )  ->  Fun  ( `' g  u.  ( ( x  \  ran  g )  X.  {
z } ) ) )
21 f1rn 5329 . . . . . . . . . . . . . . . 16  |-  ( g : y -1-1-> x  ->  ran  g  C_  x )
2221adantl 275 . . . . . . . . . . . . . . 15  |-  ( ( (EXMID 
/\  z  e.  y )  /\  g : y -1-1-> x )  ->  ran  g  C_  x )
23 exmidexmid 4120 . . . . . . . . . . . . . . . . 17  |-  (EXMID  -> DECID  u  e.  ran  g )
2423ralrimivw 2506 . . . . . . . . . . . . . . . 16  |-  (EXMID  ->  A. u  e.  x DECID  u  e.  ran  g )
2524ad2antrr 479 . . . . . . . . . . . . . . 15  |-  ( ( (EXMID 
/\  z  e.  y )  /\  g : y -1-1-> x )  ->  A. u  e.  x DECID  u  e.  ran  g )
26 undifdcss 6811 . . . . . . . . . . . . . . 15  |-  ( x  =  ( ran  g  u.  ( x  \  ran  g ) )  <->  ( ran  g  C_  x  /\  A. u  e.  x DECID  u  e.  ran  g ) )
2722, 25, 26sylanbrc 413 . . . . . . . . . . . . . 14  |-  ( ( (EXMID 
/\  z  e.  y )  /\  g : y -1-1-> x )  ->  x  =  ( ran  g  u.  ( x  \  ran  g ) ) )
28 dmun 4746 . . . . . . . . . . . . . . 15  |-  dom  ( `' g  u.  (
( x  \  ran  g )  X.  {
z } ) )  =  ( dom  `' g  u.  dom  ( ( x  \  ran  g
)  X.  { z } ) )
2910uneq1i 3226 . . . . . . . . . . . . . . 15  |-  ( ran  g  u.  dom  (
( x  \  ran  g )  X.  {
z } ) )  =  ( dom  `' g  u.  dom  ( ( x  \  ran  g
)  X.  { z } ) )
3014uneq2i 3227 . . . . . . . . . . . . . . 15  |-  ( ran  g  u.  dom  (
( x  \  ran  g )  X.  {
z } ) )  =  ( ran  g  u.  ( x  \  ran  g ) )
3128, 29, 303eqtr2i 2166 . . . . . . . . . . . . . 14  |-  dom  ( `' g  u.  (
( x  \  ran  g )  X.  {
z } ) )  =  ( ran  g  u.  ( x  \  ran  g ) )
3227, 31syl6reqr 2191 . . . . . . . . . . . . 13  |-  ( ( (EXMID 
/\  z  e.  y )  /\  g : y -1-1-> x )  ->  dom  ( `' g  u.  ( ( x  \  ran  g )  X.  {
z } ) )  =  x )
33 df-fn 5126 . . . . . . . . . . . . 13  |-  ( ( `' g  u.  (
( x  \  ran  g )  X.  {
z } ) )  Fn  x  <->  ( Fun  ( `' g  u.  (
( x  \  ran  g )  X.  {
z } ) )  /\  dom  ( `' g  u.  ( ( x  \  ran  g
)  X.  { z } ) )  =  x ) )
3420, 32, 33sylanbrc 413 . . . . . . . . . . . 12  |-  ( ( (EXMID 
/\  z  e.  y )  /\  g : y -1-1-> x )  -> 
( `' g  u.  ( ( x  \  ran  g )  X.  {
z } ) )  Fn  x )
35 rnun 4947 . . . . . . . . . . . . 13  |-  ran  ( `' g  u.  (
( x  \  ran  g )  X.  {
z } ) )  =  ( ran  `' g  u.  ran  ( ( x  \  ran  g
)  X.  { z } ) )
36 dfdm4 4731 . . . . . . . . . . . . . . . 16  |-  dom  g  =  ran  `' g
37 f1dm 5333 . . . . . . . . . . . . . . . 16  |-  ( g : y -1-1-> x  ->  dom  g  =  y
)
3836, 37syl5eqr 2186 . . . . . . . . . . . . . . 15  |-  ( g : y -1-1-> x  ->  ran  `' g  =  y
)
3938uneq1d 3229 . . . . . . . . . . . . . 14  |-  ( g : y -1-1-> x  -> 
( ran  `' g  u.  ran  ( ( x 
\  ran  g )  X.  { z } ) )  =  ( y  u.  ran  ( ( x  \  ran  g
)  X.  { z } ) ) )
40 exmidexmid 4120 . . . . . . . . . . . . . . . . . 18  |-  (EXMID  -> DECID  E. v  v  e.  ( x  \  ran  g ) )
41 exmiddc 821 . . . . . . . . . . . . . . . . . 18  |-  (DECID  E. v 
v  e.  ( x 
\  ran  g )  ->  ( E. v  v  e.  ( x  \  ran  g )  \/  -.  E. v  v  e.  ( x  \  ran  g
) ) )
4240, 41syl 14 . . . . . . . . . . . . . . . . 17  |-  (EXMID  ->  ( E. v  v  e.  ( x  \  ran  g
)  \/  -.  E. v  v  e.  (
x  \  ran  g ) ) )
43 rnxpm 4968 . . . . . . . . . . . . . . . . . . . . 21  |-  ( E. v  v  e.  ( x  \  ran  g
)  ->  ran  ( ( x  \  ran  g
)  X.  { z } )  =  {
z } )
4443adantr 274 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( E. v  v  e.  ( x  \  ran  g )  /\  z  e.  y )  ->  ran  ( ( x  \  ran  g )  X.  {
z } )  =  { z } )
45 snssi 3664 . . . . . . . . . . . . . . . . . . . . 21  |-  ( z  e.  y  ->  { z }  C_  y )
4645adantl 275 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( E. v  v  e.  ( x  \  ran  g )  /\  z  e.  y )  ->  { z }  C_  y )
4744, 46eqsstrd 3133 . . . . . . . . . . . . . . . . . . 19  |-  ( ( E. v  v  e.  ( x  \  ran  g )  /\  z  e.  y )  ->  ran  ( ( x  \  ran  g )  X.  {
z } )  C_  y )
4847ex 114 . . . . . . . . . . . . . . . . . 18  |-  ( E. v  v  e.  ( x  \  ran  g
)  ->  ( z  e.  y  ->  ran  (
( x  \  ran  g )  X.  {
z } )  C_  y ) )
49 notm0 3383 . . . . . . . . . . . . . . . . . . 19  |-  ( -. 
E. v  v  e.  ( x  \  ran  g )  <->  ( x  \  ran  g )  =  (/) )
50 xpeq1 4553 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( x  \  ran  g
)  =  (/)  ->  (
( x  \  ran  g )  X.  {
z } )  =  ( (/)  X.  { z } ) )
51 0xp 4619 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( (/)  X. 
{ z } )  =  (/)
5250, 51syl6eq 2188 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( x  \  ran  g
)  =  (/)  ->  (
( x  \  ran  g )  X.  {
z } )  =  (/) )
5352rneqd 4768 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( x  \  ran  g
)  =  (/)  ->  ran  ( ( x  \  ran  g )  X.  {
z } )  =  ran  (/) )
54 rn0 4795 . . . . . . . . . . . . . . . . . . . . . 22  |-  ran  (/)  =  (/)
5553, 54syl6eq 2188 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( x  \  ran  g
)  =  (/)  ->  ran  ( ( x  \  ran  g )  X.  {
z } )  =  (/) )
56 0ss 3401 . . . . . . . . . . . . . . . . . . . . 21  |-  (/)  C_  y
5755, 56eqsstrdi 3149 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( x  \  ran  g
)  =  (/)  ->  ran  ( ( x  \  ran  g )  X.  {
z } )  C_  y )
5857a1d 22 . . . . . . . . . . . . . . . . . . 19  |-  ( ( x  \  ran  g
)  =  (/)  ->  (
z  e.  y  ->  ran  ( ( x  \  ran  g )  X.  {
z } )  C_  y ) )
5949, 58sylbi 120 . . . . . . . . . . . . . . . . . 18  |-  ( -. 
E. v  v  e.  ( x  \  ran  g )  ->  (
z  e.  y  ->  ran  ( ( x  \  ran  g )  X.  {
z } )  C_  y ) )
6048, 59jaoi 705 . . . . . . . . . . . . . . . . 17  |-  ( ( E. v  v  e.  ( x  \  ran  g )  \/  -.  E. v  v  e.  ( x  \  ran  g
) )  ->  (
z  e.  y  ->  ran  ( ( x  \  ran  g )  X.  {
z } )  C_  y ) )
6142, 60syl 14 . . . . . . . . . . . . . . . 16  |-  (EXMID  ->  (
z  e.  y  ->  ran  ( ( x  \  ran  g )  X.  {
z } )  C_  y ) )
6261imp 123 . . . . . . . . . . . . . . 15  |-  ( (EXMID  /\  z  e.  y )  ->  ran  ( (
x  \  ran  g )  X.  { z } )  C_  y )
63 ssequn2 3249 . . . . . . . . . . . . . . 15  |-  ( ran  ( ( x  \  ran  g )  X.  {
z } )  C_  y 
<->  ( y  u.  ran  ( ( x  \  ran  g )  X.  {
z } ) )  =  y )
6462, 63sylib 121 . . . . . . . . . . . . . 14  |-  ( (EXMID  /\  z  e.  y )  ->  ( y  u. 
ran  ( ( x 
\  ran  g )  X.  { z } ) )  =  y )
6539, 64sylan9eqr 2194 . . . . . . . . . . . . 13  |-  ( ( (EXMID 
/\  z  e.  y )  /\  g : y -1-1-> x )  -> 
( ran  `' g  u.  ran  ( ( x 
\  ran  g )  X.  { z } ) )  =  y )
6635, 65syl5eq 2184 . . . . . . . . . . . 12  |-  ( ( (EXMID 
/\  z  e.  y )  /\  g : y -1-1-> x )  ->  ran  ( `' g  u.  ( ( x  \  ran  g )  X.  {
z } ) )  =  y )
67 df-fo 5129 . . . . . . . . . . . 12  |-  ( ( `' g  u.  (
( x  \  ran  g )  X.  {
z } ) ) : x -onto-> y  <->  ( ( `' g  u.  (
( x  \  ran  g )  X.  {
z } ) )  Fn  x  /\  ran  ( `' g  u.  (
( x  \  ran  g )  X.  {
z } ) )  =  y ) )
6834, 66, 67sylanbrc 413 . . . . . . . . . . 11  |-  ( ( (EXMID 
/\  z  e.  y )  /\  g : y -1-1-> x )  -> 
( `' g  u.  ( ( x  \  ran  g )  X.  {
z } ) ) : x -onto-> y )
69 vex 2689 . . . . . . . . . . . . . 14  |-  g  e. 
_V
7069cnvex 5077 . . . . . . . . . . . . 13  |-  `' g  e.  _V
71 vex 2689 . . . . . . . . . . . . . . 15  |-  x  e. 
_V
72 difexg 4069 . . . . . . . . . . . . . . 15  |-  ( x  e.  _V  ->  (
x  \  ran  g )  e.  _V )
7371, 72ax-mp 5 . . . . . . . . . . . . . 14  |-  ( x 
\  ran  g )  e.  _V
745snex 4109 . . . . . . . . . . . . . 14  |-  { z }  e.  _V
7573, 74xpex 4654 . . . . . . . . . . . . 13  |-  ( ( x  \  ran  g
)  X.  { z } )  e.  _V
7670, 75unex 4362 . . . . . . . . . . . 12  |-  ( `' g  u.  ( ( x  \  ran  g
)  X.  { z } ) )  e. 
_V
77 foeq1 5341 . . . . . . . . . . . 12  |-  ( f  =  ( `' g  u.  ( ( x 
\  ran  g )  X.  { z } ) )  ->  ( f : x -onto-> y  <->  ( `' g  u.  ( (
x  \  ran  g )  X.  { z } ) ) : x
-onto-> y ) )
7876, 77spcev 2780 . . . . . . . . . . 11  |-  ( ( `' g  u.  (
( x  \  ran  g )  X.  {
z } ) ) : x -onto-> y  ->  E. f  f :
x -onto-> y )
7968, 78syl 14 . . . . . . . . . 10  |-  ( ( (EXMID 
/\  z  e.  y )  /\  g : y -1-1-> x )  ->  E. f  f :
x -onto-> y )
8079an32s 557 . . . . . . . . 9  |-  ( ( (EXMID 
/\  g : y
-1-1-> x )  /\  z  e.  y )  ->  E. f 
f : x -onto-> y )
8180ex 114 . . . . . . . 8  |-  ( (EXMID  /\  g : y -1-1-> x
)  ->  ( z  e.  y  ->  E. f 
f : x -onto-> y ) )
8281exlimdv 1791 . . . . . . 7  |-  ( (EXMID  /\  g : y -1-1-> x
)  ->  ( E. z  z  e.  y  ->  E. f  f : x -onto-> y ) )
8382imp 123 . . . . . 6  |-  ( ( (EXMID 
/\  g : y
-1-1-> x )  /\  E. z  z  e.  y
)  ->  E. f 
f : x -onto-> y )
8483an32s 557 . . . . 5  |-  ( ( (EXMID 
/\  E. z  z  e.  y )  /\  g : y -1-1-> x )  ->  E. f  f : x -onto-> y )
8584adantlrr 474 . . . 4  |-  ( ( (EXMID 
/\  ( E. z 
z  e.  y  /\  y  ~<_  x ) )  /\  g : y
-1-1-> x )  ->  E. f 
f : x -onto-> y )
862, 85exlimddv 1870 . . 3  |-  ( (EXMID  /\  ( E. z  z  e.  y  /\  y  ~<_  x ) )  ->  E. f  f :
x -onto-> y )
8786ex 114 . 2  |-  (EXMID  ->  (
( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f 
f : x -onto-> y ) )
8887alrimivv 1847 1  |-  (EXMID  ->  A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f  f : x -onto-> y ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    \/ wo 697  DECID wdc 819   A.wal 1329    = wceq 1331   E.wex 1468    e. wcel 1480   A.wral 2416   _Vcvv 2686    \ cdif 3068    u. cun 3069    i^i cin 3070    C_ wss 3071   (/)c0 3363   {csn 3527   class class class wbr 3929  EXMIDwem 4118    X. cxp 4537   `'ccnv 4538   dom cdm 4539   ran crn 4540   Fun wfun 5117    Fn wfn 5118   -->wf 5119   -1-1->wf1 5120   -onto->wfo 5121    ~<_ cdom 6633
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ral 2421  df-rex 2422  df-rab 2425  df-v 2688  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-br 3930  df-opab 3990  df-mpt 3991  df-exmid 4119  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-dom 6636
This theorem is referenced by:  exmidfodomr  7060
  Copyright terms: Public domain W3C validator