ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exmidfodomrlemim Unicode version

Theorem exmidfodomrlemim 7178
Description: Excluded middle implies the existence of a mapping from any set onto any inhabited set that it dominates. Proposition 1.1 of [PradicBrown2022], p. 2. (Contributed by Jim Kingdon, 1-Jul-2022.)
Assertion
Ref Expression
exmidfodomrlemim  |-  (EXMID  ->  A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f  f : x -onto-> y ) )
Distinct variable groups:    x, f, z   
y, f, z

Proof of Theorem exmidfodomrlemim
Dummy variables  g  u  v  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 brdomi 6727 . . . . 5  |-  ( y  ~<_  x  ->  E. g 
g : y -1-1-> x
)
21ad2antll 488 . . . 4  |-  ( (EXMID  /\  ( E. z  z  e.  y  /\  y  ~<_  x ) )  ->  E. g  g :
y -1-1-> x )
3 df-f1 5203 . . . . . . . . . . . . . . . . 17  |-  ( g : y -1-1-> x  <->  ( g : y --> x  /\  Fun  `' g ) )
43simprbi 273 . . . . . . . . . . . . . . . 16  |-  ( g : y -1-1-> x  ->  Fun  `' g )
5 vex 2733 . . . . . . . . . . . . . . . . . 18  |-  z  e. 
_V
65fconst 5393 . . . . . . . . . . . . . . . . 17  |-  ( ( x  \  ran  g
)  X.  { z } ) : ( x  \  ran  g
) --> { z }
7 ffun 5350 . . . . . . . . . . . . . . . . 17  |-  ( ( ( x  \  ran  g )  X.  {
z } ) : ( x  \  ran  g ) --> { z }  ->  Fun  ( ( x  \  ran  g
)  X.  { z } ) )
86, 7ax-mp 5 . . . . . . . . . . . . . . . 16  |-  Fun  (
( x  \  ran  g )  X.  {
z } )
94, 8jctir 311 . . . . . . . . . . . . . . 15  |-  ( g : y -1-1-> x  -> 
( Fun  `' g  /\  Fun  ( ( x 
\  ran  g )  X.  { z } ) ) )
10 df-rn 4622 . . . . . . . . . . . . . . . . . 18  |-  ran  g  =  dom  `' g
1110eqcomi 2174 . . . . . . . . . . . . . . . . 17  |-  dom  `' g  =  ran  g
125snm 3703 . . . . . . . . . . . . . . . . . 18  |-  E. w  w  e.  { z }
13 dmxpm 4831 . . . . . . . . . . . . . . . . . 18  |-  ( E. w  w  e.  {
z }  ->  dom  ( ( x  \  ran  g )  X.  {
z } )  =  ( x  \  ran  g ) )
1412, 13ax-mp 5 . . . . . . . . . . . . . . . . 17  |-  dom  (
( x  \  ran  g )  X.  {
z } )  =  ( x  \  ran  g )
1511, 14ineq12i 3326 . . . . . . . . . . . . . . . 16  |-  ( dom  `' g  i^i  dom  (
( x  \  ran  g )  X.  {
z } ) )  =  ( ran  g  i^i  ( x  \  ran  g ) )
16 disjdif 3487 . . . . . . . . . . . . . . . 16  |-  ( ran  g  i^i  ( x 
\  ran  g )
)  =  (/)
1715, 16eqtri 2191 . . . . . . . . . . . . . . 15  |-  ( dom  `' g  i^i  dom  (
( x  \  ran  g )  X.  {
z } ) )  =  (/)
18 funun 5242 . . . . . . . . . . . . . . 15  |-  ( ( ( Fun  `' g  /\  Fun  ( ( x  \  ran  g
)  X.  { z } ) )  /\  ( dom  `' g  i^i 
dom  ( ( x 
\  ran  g )  X.  { z } ) )  =  (/) )  ->  Fun  ( `' g  u.  ( ( x  \  ran  g )  X.  {
z } ) ) )
199, 17, 18sylancl 411 . . . . . . . . . . . . . 14  |-  ( g : y -1-1-> x  ->  Fun  ( `' g  u.  ( ( x  \  ran  g )  X.  {
z } ) ) )
2019adantl 275 . . . . . . . . . . . . 13  |-  ( ( (EXMID 
/\  z  e.  y )  /\  g : y -1-1-> x )  ->  Fun  ( `' g  u.  ( ( x  \  ran  g )  X.  {
z } ) ) )
21 dmun 4818 . . . . . . . . . . . . . . 15  |-  dom  ( `' g  u.  (
( x  \  ran  g )  X.  {
z } ) )  =  ( dom  `' g  u.  dom  ( ( x  \  ran  g
)  X.  { z } ) )
2210uneq1i 3277 . . . . . . . . . . . . . . 15  |-  ( ran  g  u.  dom  (
( x  \  ran  g )  X.  {
z } ) )  =  ( dom  `' g  u.  dom  ( ( x  \  ran  g
)  X.  { z } ) )
2314uneq2i 3278 . . . . . . . . . . . . . . 15  |-  ( ran  g  u.  dom  (
( x  \  ran  g )  X.  {
z } ) )  =  ( ran  g  u.  ( x  \  ran  g ) )
2421, 22, 233eqtr2i 2197 . . . . . . . . . . . . . 14  |-  dom  ( `' g  u.  (
( x  \  ran  g )  X.  {
z } ) )  =  ( ran  g  u.  ( x  \  ran  g ) )
25 f1rn 5404 . . . . . . . . . . . . . . . 16  |-  ( g : y -1-1-> x  ->  ran  g  C_  x )
2625adantl 275 . . . . . . . . . . . . . . 15  |-  ( ( (EXMID 
/\  z  e.  y )  /\  g : y -1-1-> x )  ->  ran  g  C_  x )
27 exmidexmid 4182 . . . . . . . . . . . . . . . . 17  |-  (EXMID  -> DECID  u  e.  ran  g )
2827ralrimivw 2544 . . . . . . . . . . . . . . . 16  |-  (EXMID  ->  A. u  e.  x DECID  u  e.  ran  g )
2928ad2antrr 485 . . . . . . . . . . . . . . 15  |-  ( ( (EXMID 
/\  z  e.  y )  /\  g : y -1-1-> x )  ->  A. u  e.  x DECID  u  e.  ran  g )
30 undifdcss 6900 . . . . . . . . . . . . . . 15  |-  ( x  =  ( ran  g  u.  ( x  \  ran  g ) )  <->  ( ran  g  C_  x  /\  A. u  e.  x DECID  u  e.  ran  g ) )
3126, 29, 30sylanbrc 415 . . . . . . . . . . . . . 14  |-  ( ( (EXMID 
/\  z  e.  y )  /\  g : y -1-1-> x )  ->  x  =  ( ran  g  u.  ( x  \  ran  g ) ) )
3224, 31eqtr4id 2222 . . . . . . . . . . . . 13  |-  ( ( (EXMID 
/\  z  e.  y )  /\  g : y -1-1-> x )  ->  dom  ( `' g  u.  ( ( x  \  ran  g )  X.  {
z } ) )  =  x )
33 df-fn 5201 . . . . . . . . . . . . 13  |-  ( ( `' g  u.  (
( x  \  ran  g )  X.  {
z } ) )  Fn  x  <->  ( Fun  ( `' g  u.  (
( x  \  ran  g )  X.  {
z } ) )  /\  dom  ( `' g  u.  ( ( x  \  ran  g
)  X.  { z } ) )  =  x ) )
3420, 32, 33sylanbrc 415 . . . . . . . . . . . 12  |-  ( ( (EXMID 
/\  z  e.  y )  /\  g : y -1-1-> x )  -> 
( `' g  u.  ( ( x  \  ran  g )  X.  {
z } ) )  Fn  x )
35 rnun 5019 . . . . . . . . . . . . 13  |-  ran  ( `' g  u.  (
( x  \  ran  g )  X.  {
z } ) )  =  ( ran  `' g  u.  ran  ( ( x  \  ran  g
)  X.  { z } ) )
36 dfdm4 4803 . . . . . . . . . . . . . . . 16  |-  dom  g  =  ran  `' g
37 f1dm 5408 . . . . . . . . . . . . . . . 16  |-  ( g : y -1-1-> x  ->  dom  g  =  y
)
3836, 37eqtr3id 2217 . . . . . . . . . . . . . . 15  |-  ( g : y -1-1-> x  ->  ran  `' g  =  y
)
3938uneq1d 3280 . . . . . . . . . . . . . 14  |-  ( g : y -1-1-> x  -> 
( ran  `' g  u.  ran  ( ( x 
\  ran  g )  X.  { z } ) )  =  ( y  u.  ran  ( ( x  \  ran  g
)  X.  { z } ) ) )
40 exmidexmid 4182 . . . . . . . . . . . . . . . . . 18  |-  (EXMID  -> DECID  E. v  v  e.  ( x  \  ran  g ) )
41 exmiddc 831 . . . . . . . . . . . . . . . . . 18  |-  (DECID  E. v 
v  e.  ( x 
\  ran  g )  ->  ( E. v  v  e.  ( x  \  ran  g )  \/  -.  E. v  v  e.  ( x  \  ran  g
) ) )
4240, 41syl 14 . . . . . . . . . . . . . . . . 17  |-  (EXMID  ->  ( E. v  v  e.  ( x  \  ran  g
)  \/  -.  E. v  v  e.  (
x  \  ran  g ) ) )
43 rnxpm 5040 . . . . . . . . . . . . . . . . . . . . 21  |-  ( E. v  v  e.  ( x  \  ran  g
)  ->  ran  ( ( x  \  ran  g
)  X.  { z } )  =  {
z } )
4443adantr 274 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( E. v  v  e.  ( x  \  ran  g )  /\  z  e.  y )  ->  ran  ( ( x  \  ran  g )  X.  {
z } )  =  { z } )
45 snssi 3724 . . . . . . . . . . . . . . . . . . . . 21  |-  ( z  e.  y  ->  { z }  C_  y )
4645adantl 275 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( E. v  v  e.  ( x  \  ran  g )  /\  z  e.  y )  ->  { z }  C_  y )
4744, 46eqsstrd 3183 . . . . . . . . . . . . . . . . . . 19  |-  ( ( E. v  v  e.  ( x  \  ran  g )  /\  z  e.  y )  ->  ran  ( ( x  \  ran  g )  X.  {
z } )  C_  y )
4847ex 114 . . . . . . . . . . . . . . . . . 18  |-  ( E. v  v  e.  ( x  \  ran  g
)  ->  ( z  e.  y  ->  ran  (
( x  \  ran  g )  X.  {
z } )  C_  y ) )
49 notm0 3435 . . . . . . . . . . . . . . . . . . 19  |-  ( -. 
E. v  v  e.  ( x  \  ran  g )  <->  ( x  \  ran  g )  =  (/) )
50 xpeq1 4625 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( x  \  ran  g
)  =  (/)  ->  (
( x  \  ran  g )  X.  {
z } )  =  ( (/)  X.  { z } ) )
51 0xp 4691 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( (/)  X. 
{ z } )  =  (/)
5250, 51eqtrdi 2219 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( x  \  ran  g
)  =  (/)  ->  (
( x  \  ran  g )  X.  {
z } )  =  (/) )
5352rneqd 4840 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( x  \  ran  g
)  =  (/)  ->  ran  ( ( x  \  ran  g )  X.  {
z } )  =  ran  (/) )
54 rn0 4867 . . . . . . . . . . . . . . . . . . . . . 22  |-  ran  (/)  =  (/)
5553, 54eqtrdi 2219 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( x  \  ran  g
)  =  (/)  ->  ran  ( ( x  \  ran  g )  X.  {
z } )  =  (/) )
56 0ss 3453 . . . . . . . . . . . . . . . . . . . . 21  |-  (/)  C_  y
5755, 56eqsstrdi 3199 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( x  \  ran  g
)  =  (/)  ->  ran  ( ( x  \  ran  g )  X.  {
z } )  C_  y )
5857a1d 22 . . . . . . . . . . . . . . . . . . 19  |-  ( ( x  \  ran  g
)  =  (/)  ->  (
z  e.  y  ->  ran  ( ( x  \  ran  g )  X.  {
z } )  C_  y ) )
5949, 58sylbi 120 . . . . . . . . . . . . . . . . . 18  |-  ( -. 
E. v  v  e.  ( x  \  ran  g )  ->  (
z  e.  y  ->  ran  ( ( x  \  ran  g )  X.  {
z } )  C_  y ) )
6048, 59jaoi 711 . . . . . . . . . . . . . . . . 17  |-  ( ( E. v  v  e.  ( x  \  ran  g )  \/  -.  E. v  v  e.  ( x  \  ran  g
) )  ->  (
z  e.  y  ->  ran  ( ( x  \  ran  g )  X.  {
z } )  C_  y ) )
6142, 60syl 14 . . . . . . . . . . . . . . . 16  |-  (EXMID  ->  (
z  e.  y  ->  ran  ( ( x  \  ran  g )  X.  {
z } )  C_  y ) )
6261imp 123 . . . . . . . . . . . . . . 15  |-  ( (EXMID  /\  z  e.  y )  ->  ran  ( (
x  \  ran  g )  X.  { z } )  C_  y )
63 ssequn2 3300 . . . . . . . . . . . . . . 15  |-  ( ran  ( ( x  \  ran  g )  X.  {
z } )  C_  y 
<->  ( y  u.  ran  ( ( x  \  ran  g )  X.  {
z } ) )  =  y )
6462, 63sylib 121 . . . . . . . . . . . . . 14  |-  ( (EXMID  /\  z  e.  y )  ->  ( y  u. 
ran  ( ( x 
\  ran  g )  X.  { z } ) )  =  y )
6539, 64sylan9eqr 2225 . . . . . . . . . . . . 13  |-  ( ( (EXMID 
/\  z  e.  y )  /\  g : y -1-1-> x )  -> 
( ran  `' g  u.  ran  ( ( x 
\  ran  g )  X.  { z } ) )  =  y )
6635, 65eqtrid 2215 . . . . . . . . . . . 12  |-  ( ( (EXMID 
/\  z  e.  y )  /\  g : y -1-1-> x )  ->  ran  ( `' g  u.  ( ( x  \  ran  g )  X.  {
z } ) )  =  y )
67 df-fo 5204 . . . . . . . . . . . 12  |-  ( ( `' g  u.  (
( x  \  ran  g )  X.  {
z } ) ) : x -onto-> y  <->  ( ( `' g  u.  (
( x  \  ran  g )  X.  {
z } ) )  Fn  x  /\  ran  ( `' g  u.  (
( x  \  ran  g )  X.  {
z } ) )  =  y ) )
6834, 66, 67sylanbrc 415 . . . . . . . . . . 11  |-  ( ( (EXMID 
/\  z  e.  y )  /\  g : y -1-1-> x )  -> 
( `' g  u.  ( ( x  \  ran  g )  X.  {
z } ) ) : x -onto-> y )
69 vex 2733 . . . . . . . . . . . . . 14  |-  g  e. 
_V
7069cnvex 5149 . . . . . . . . . . . . 13  |-  `' g  e.  _V
71 vex 2733 . . . . . . . . . . . . . . 15  |-  x  e. 
_V
72 difexg 4130 . . . . . . . . . . . . . . 15  |-  ( x  e.  _V  ->  (
x  \  ran  g )  e.  _V )
7371, 72ax-mp 5 . . . . . . . . . . . . . 14  |-  ( x 
\  ran  g )  e.  _V
745snex 4171 . . . . . . . . . . . . . 14  |-  { z }  e.  _V
7573, 74xpex 4726 . . . . . . . . . . . . 13  |-  ( ( x  \  ran  g
)  X.  { z } )  e.  _V
7670, 75unex 4426 . . . . . . . . . . . 12  |-  ( `' g  u.  ( ( x  \  ran  g
)  X.  { z } ) )  e. 
_V
77 foeq1 5416 . . . . . . . . . . . 12  |-  ( f  =  ( `' g  u.  ( ( x 
\  ran  g )  X.  { z } ) )  ->  ( f : x -onto-> y  <->  ( `' g  u.  ( (
x  \  ran  g )  X.  { z } ) ) : x
-onto-> y ) )
7876, 77spcev 2825 . . . . . . . . . . 11  |-  ( ( `' g  u.  (
( x  \  ran  g )  X.  {
z } ) ) : x -onto-> y  ->  E. f  f :
x -onto-> y )
7968, 78syl 14 . . . . . . . . . 10  |-  ( ( (EXMID 
/\  z  e.  y )  /\  g : y -1-1-> x )  ->  E. f  f :
x -onto-> y )
8079an32s 563 . . . . . . . . 9  |-  ( ( (EXMID 
/\  g : y
-1-1-> x )  /\  z  e.  y )  ->  E. f 
f : x -onto-> y )
8180ex 114 . . . . . . . 8  |-  ( (EXMID  /\  g : y -1-1-> x
)  ->  ( z  e.  y  ->  E. f 
f : x -onto-> y ) )
8281exlimdv 1812 . . . . . . 7  |-  ( (EXMID  /\  g : y -1-1-> x
)  ->  ( E. z  z  e.  y  ->  E. f  f : x -onto-> y ) )
8382imp 123 . . . . . 6  |-  ( ( (EXMID 
/\  g : y
-1-1-> x )  /\  E. z  z  e.  y
)  ->  E. f 
f : x -onto-> y )
8483an32s 563 . . . . 5  |-  ( ( (EXMID 
/\  E. z  z  e.  y )  /\  g : y -1-1-> x )  ->  E. f  f : x -onto-> y )
8584adantlrr 480 . . . 4  |-  ( ( (EXMID 
/\  ( E. z 
z  e.  y  /\  y  ~<_  x ) )  /\  g : y
-1-1-> x )  ->  E. f 
f : x -onto-> y )
862, 85exlimddv 1891 . . 3  |-  ( (EXMID  /\  ( E. z  z  e.  y  /\  y  ~<_  x ) )  ->  E. f  f :
x -onto-> y )
8786ex 114 . 2  |-  (EXMID  ->  (
( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f 
f : x -onto-> y ) )
8887alrimivv 1868 1  |-  (EXMID  ->  A. x A. y ( ( E. z  z  e.  y  /\  y  ~<_  x )  ->  E. f  f : x -onto-> y ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    \/ wo 703  DECID wdc 829   A.wal 1346    = wceq 1348   E.wex 1485    e. wcel 2141   A.wral 2448   _Vcvv 2730    \ cdif 3118    u. cun 3119    i^i cin 3120    C_ wss 3121   (/)c0 3414   {csn 3583   class class class wbr 3989  EXMIDwem 4180    X. cxp 4609   `'ccnv 4610   dom cdm 4611   ran crn 4612   Fun wfun 5192    Fn wfn 5193   -->wf 5194   -1-1->wf1 5195   -onto->wfo 5196    ~<_ cdom 6717
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-rab 2457  df-v 2732  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-mpt 4052  df-exmid 4181  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-dom 6720
This theorem is referenced by:  exmidfodomr  7181
  Copyright terms: Public domain W3C validator