ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  djuexb Unicode version

Theorem djuexb 7045
Description: The disjoint union of two classes is a set iff both classes are sets. (Contributed by Jim Kingdon, 6-Sep-2023.)
Assertion
Ref Expression
djuexb  |-  ( ( A  e.  _V  /\  B  e.  _V )  <->  ( A B )  e.  _V )

Proof of Theorem djuexb
StepHypRef Expression
1 djuex 7044 . 2  |-  ( ( A  e.  _V  /\  B  e.  _V )  ->  ( A B )  e.  _V )
2 df-dju 7039 . . . . 5  |-  ( A B )  =  ( ( { (/) }  X.  A )  u.  ( { 1o }  X.  B
) )
32eleq1i 2243 . . . 4  |-  ( ( A B )  e.  _V  <->  ( ( { (/) }  X.  A )  u.  ( { 1o }  X.  B
) )  e.  _V )
4 unexb 4444 . . . 4  |-  ( ( ( { (/) }  X.  A )  e.  _V  /\  ( { 1o }  X.  B )  e.  _V ) 
<->  ( ( { (/) }  X.  A )  u.  ( { 1o }  X.  B ) )  e. 
_V )
53, 4bitr4i 187 . . 3  |-  ( ( A B )  e.  _V  <->  ( ( { (/) }  X.  A )  e.  _V  /\  ( { 1o }  X.  B )  e.  _V ) )
6 0ex 4132 . . . . . . 7  |-  (/)  e.  _V
76snm 3714 . . . . . 6  |-  E. x  x  e.  { (/) }
8 rnxpm 5060 . . . . . 6  |-  ( E. x  x  e.  { (/)
}  ->  ran  ( {
(/) }  X.  A
)  =  A )
97, 8ax-mp 5 . . . . 5  |-  ran  ( { (/) }  X.  A
)  =  A
10 rnexg 4894 . . . . 5  |-  ( ( { (/) }  X.  A
)  e.  _V  ->  ran  ( { (/) }  X.  A )  e.  _V )
119, 10eqeltrrid 2265 . . . 4  |-  ( ( { (/) }  X.  A
)  e.  _V  ->  A  e.  _V )
12 1oex 6427 . . . . . . 7  |-  1o  e.  _V
1312snm 3714 . . . . . 6  |-  E. x  x  e.  { 1o }
14 rnxpm 5060 . . . . . 6  |-  ( E. x  x  e.  { 1o }  ->  ran  ( { 1o }  X.  B
)  =  B )
1513, 14ax-mp 5 . . . . 5  |-  ran  ( { 1o }  X.  B
)  =  B
16 rnexg 4894 . . . . 5  |-  ( ( { 1o }  X.  B )  e.  _V  ->  ran  ( { 1o }  X.  B )  e. 
_V )
1715, 16eqeltrrid 2265 . . . 4  |-  ( ( { 1o }  X.  B )  e.  _V  ->  B  e.  _V )
1811, 17anim12i 338 . . 3  |-  ( ( ( { (/) }  X.  A )  e.  _V  /\  ( { 1o }  X.  B )  e.  _V )  ->  ( A  e. 
_V  /\  B  e.  _V ) )
195, 18sylbi 121 . 2  |-  ( ( A B )  e.  _V  ->  ( A  e.  _V  /\  B  e.  _V )
)
201, 19impbii 126 1  |-  ( ( A  e.  _V  /\  B  e.  _V )  <->  ( A B )  e.  _V )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    = wceq 1353   E.wex 1492    e. wcel 2148   _Vcvv 2739    u. cun 3129   (/)c0 3424   {csn 3594    X. cxp 4626   ran crn 4629   1oc1o 6412   ⊔ cdju 7038
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2741  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-br 4006  df-opab 4067  df-tr 4104  df-iord 4368  df-on 4370  df-suc 4373  df-xp 4634  df-rel 4635  df-cnv 4636  df-dm 4638  df-rn 4639  df-1o 6419  df-dju 7039
This theorem is referenced by:  ctfoex  7119
  Copyright terms: Public domain W3C validator