ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  djuexb Unicode version

Theorem djuexb 7103
Description: The disjoint union of two classes is a set iff both classes are sets. (Contributed by Jim Kingdon, 6-Sep-2023.)
Assertion
Ref Expression
djuexb  |-  ( ( A  e.  _V  /\  B  e.  _V )  <->  ( A B )  e.  _V )

Proof of Theorem djuexb
StepHypRef Expression
1 djuex 7102 . 2  |-  ( ( A  e.  _V  /\  B  e.  _V )  ->  ( A B )  e.  _V )
2 df-dju 7097 . . . . 5  |-  ( A B )  =  ( ( { (/) }  X.  A )  u.  ( { 1o }  X.  B
) )
32eleq1i 2259 . . . 4  |-  ( ( A B )  e.  _V  <->  ( ( { (/) }  X.  A )  u.  ( { 1o }  X.  B
) )  e.  _V )
4 unexb 4473 . . . 4  |-  ( ( ( { (/) }  X.  A )  e.  _V  /\  ( { 1o }  X.  B )  e.  _V ) 
<->  ( ( { (/) }  X.  A )  u.  ( { 1o }  X.  B ) )  e. 
_V )
53, 4bitr4i 187 . . 3  |-  ( ( A B )  e.  _V  <->  ( ( { (/) }  X.  A )  e.  _V  /\  ( { 1o }  X.  B )  e.  _V ) )
6 0ex 4156 . . . . . . 7  |-  (/)  e.  _V
76snm 3738 . . . . . 6  |-  E. x  x  e.  { (/) }
8 rnxpm 5095 . . . . . 6  |-  ( E. x  x  e.  { (/)
}  ->  ran  ( {
(/) }  X.  A
)  =  A )
97, 8ax-mp 5 . . . . 5  |-  ran  ( { (/) }  X.  A
)  =  A
10 rnexg 4927 . . . . 5  |-  ( ( { (/) }  X.  A
)  e.  _V  ->  ran  ( { (/) }  X.  A )  e.  _V )
119, 10eqeltrrid 2281 . . . 4  |-  ( ( { (/) }  X.  A
)  e.  _V  ->  A  e.  _V )
12 1oex 6477 . . . . . . 7  |-  1o  e.  _V
1312snm 3738 . . . . . 6  |-  E. x  x  e.  { 1o }
14 rnxpm 5095 . . . . . 6  |-  ( E. x  x  e.  { 1o }  ->  ran  ( { 1o }  X.  B
)  =  B )
1513, 14ax-mp 5 . . . . 5  |-  ran  ( { 1o }  X.  B
)  =  B
16 rnexg 4927 . . . . 5  |-  ( ( { 1o }  X.  B )  e.  _V  ->  ran  ( { 1o }  X.  B )  e. 
_V )
1715, 16eqeltrrid 2281 . . . 4  |-  ( ( { 1o }  X.  B )  e.  _V  ->  B  e.  _V )
1811, 17anim12i 338 . . 3  |-  ( ( ( { (/) }  X.  A )  e.  _V  /\  ( { 1o }  X.  B )  e.  _V )  ->  ( A  e. 
_V  /\  B  e.  _V ) )
195, 18sylbi 121 . 2  |-  ( ( A B )  e.  _V  ->  ( A  e.  _V  /\  B  e.  _V )
)
201, 19impbii 126 1  |-  ( ( A  e.  _V  /\  B  e.  _V )  <->  ( A B )  e.  _V )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    = wceq 1364   E.wex 1503    e. wcel 2164   _Vcvv 2760    u. cun 3151   (/)c0 3446   {csn 3618    X. cxp 4657   ran crn 4660   1oc1o 6462   ⊔ cdju 7096
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-tr 4128  df-iord 4397  df-on 4399  df-suc 4402  df-xp 4665  df-rel 4666  df-cnv 4667  df-dm 4669  df-rn 4670  df-1o 6469  df-dju 7097
This theorem is referenced by:  ctfoex  7177
  Copyright terms: Public domain W3C validator