Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > djuexb | Unicode version |
Description: The disjoint union of two classes is a set iff both classes are sets. (Contributed by Jim Kingdon, 6-Sep-2023.) |
Ref | Expression |
---|---|
djuexb | ⊔ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | djuex 7008 | . 2 ⊔ | |
2 | df-dju 7003 | . . . . 5 ⊔ | |
3 | 2 | eleq1i 2232 | . . . 4 ⊔ |
4 | unexb 4420 | . . . 4 | |
5 | 3, 4 | bitr4i 186 | . . 3 ⊔ |
6 | 0ex 4109 | . . . . . . 7 | |
7 | 6 | snm 3696 | . . . . . 6 |
8 | rnxpm 5033 | . . . . . 6 | |
9 | 7, 8 | ax-mp 5 | . . . . 5 |
10 | rnexg 4869 | . . . . 5 | |
11 | 9, 10 | eqeltrrid 2254 | . . . 4 |
12 | 1oex 6392 | . . . . . . 7 | |
13 | 12 | snm 3696 | . . . . . 6 |
14 | rnxpm 5033 | . . . . . 6 | |
15 | 13, 14 | ax-mp 5 | . . . . 5 |
16 | rnexg 4869 | . . . . 5 | |
17 | 15, 16 | eqeltrrid 2254 | . . . 4 |
18 | 11, 17 | anim12i 336 | . . 3 |
19 | 5, 18 | sylbi 120 | . 2 ⊔ |
20 | 1, 19 | impbii 125 | 1 ⊔ |
Colors of variables: wff set class |
Syntax hints: wa 103 wb 104 wceq 1343 wex 1480 wcel 2136 cvv 2726 cun 3114 c0 3409 csn 3576 cxp 4602 crn 4605 c1o 6377 ⊔ cdju 7002 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-tr 4081 df-iord 4344 df-on 4346 df-suc 4349 df-xp 4610 df-rel 4611 df-cnv 4612 df-dm 4614 df-rn 4615 df-1o 6384 df-dju 7003 |
This theorem is referenced by: ctfoex 7083 |
Copyright terms: Public domain | W3C validator |