ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  snm GIF version

Theorem snm 3696
Description: The singleton of a set is inhabited. (Contributed by Jim Kingdon, 11-Aug-2018.)
Hypothesis
Ref Expression
snnz.1 𝐴 ∈ V
Assertion
Ref Expression
snm 𝑥 𝑥 ∈ {𝐴}
Distinct variable group:   𝑥,𝐴

Proof of Theorem snm
StepHypRef Expression
1 snnz.1 . 2 𝐴 ∈ V
2 snmg 3694 . 2 (𝐴 ∈ V → ∃𝑥 𝑥 ∈ {𝐴})
31, 2ax-mp 5 1 𝑥 𝑥 ∈ {𝐴}
Colors of variables: wff set class
Syntax hints:  wex 1480  wcel 2136  Vcvv 2726  {csn 3576
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-sn 3582
This theorem is referenced by:  mss  4204  ssfilem  6841  diffitest  6853  djuexb  7009  exmidonfinlem  7149  exmidfodomrlemim  7157  cc2lem  7207
  Copyright terms: Public domain W3C validator