Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > snm | GIF version |
Description: The singleton of a set is inhabited. (Contributed by Jim Kingdon, 11-Aug-2018.) |
Ref | Expression |
---|---|
snnz.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
snm | ⊢ ∃𝑥 𝑥 ∈ {𝐴} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snnz.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | snmg 3694 | . 2 ⊢ (𝐴 ∈ V → ∃𝑥 𝑥 ∈ {𝐴}) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ ∃𝑥 𝑥 ∈ {𝐴} |
Colors of variables: wff set class |
Syntax hints: ∃wex 1480 ∈ wcel 2136 Vcvv 2726 {csn 3576 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 df-sn 3582 |
This theorem is referenced by: mss 4204 ssfilem 6841 diffitest 6853 djuexb 7009 exmidonfinlem 7149 exmidfodomrlemim 7157 cc2lem 7207 |
Copyright terms: Public domain | W3C validator |