ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  snm GIF version

Theorem snm 3714
Description: The singleton of a set is inhabited. (Contributed by Jim Kingdon, 11-Aug-2018.)
Hypothesis
Ref Expression
snnz.1 𝐴 ∈ V
Assertion
Ref Expression
snm 𝑥 𝑥 ∈ {𝐴}
Distinct variable group:   𝑥,𝐴

Proof of Theorem snm
StepHypRef Expression
1 snnz.1 . 2 𝐴 ∈ V
2 snmg 3712 . 2 (𝐴 ∈ V → ∃𝑥 𝑥 ∈ {𝐴})
31, 2ax-mp 5 1 𝑥 𝑥 ∈ {𝐴}
Colors of variables: wff set class
Syntax hints:  wex 1492  wcel 2148  Vcvv 2739  {csn 3594
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-v 2741  df-sn 3600
This theorem is referenced by:  mss  4228  ssfilem  6877  diffitest  6889  djuexb  7045  exmidonfinlem  7194  exmidfodomrlemim  7202  cc2lem  7267
  Copyright terms: Public domain W3C validator