ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  snm GIF version

Theorem snm 3752
Description: The singleton of a set is inhabited. (Contributed by Jim Kingdon, 11-Aug-2018.)
Hypothesis
Ref Expression
snnz.1 𝐴 ∈ V
Assertion
Ref Expression
snm 𝑥 𝑥 ∈ {𝐴}
Distinct variable group:   𝑥,𝐴

Proof of Theorem snm
StepHypRef Expression
1 snnz.1 . 2 𝐴 ∈ V
2 snmg 3750 . 2 (𝐴 ∈ V → ∃𝑥 𝑥 ∈ {𝐴})
31, 2ax-mp 5 1 𝑥 𝑥 ∈ {𝐴}
Colors of variables: wff set class
Syntax hints:  wex 1514  wcel 2175  Vcvv 2771  {csn 3632
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-v 2773  df-sn 3638
This theorem is referenced by:  mss  4269  ssfilem  6971  diffitest  6983  djuexb  7145  exmidonfinlem  7300  exmidfodomrlemim  7308  cc2lem  7377
  Copyright terms: Public domain W3C validator