Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sqxpeqd | Unicode version |
Description: Equality deduction for a Cartesian square, see Wikipedia "Cartesian product", https://en.wikipedia.org/wiki/Cartesian_product#n-ary_Cartesian_power. (Contributed by AV, 13-Jan-2020.) |
Ref | Expression |
---|---|
xpeq1d.1 |
Ref | Expression |
---|---|
sqxpeqd |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpeq1d.1 | . 2 | |
2 | 1, 1 | xpeq12d 4629 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wceq 1343 cxp 4602 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-11 1494 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-opab 4044 df-xp 4610 |
This theorem is referenced by: intopsn 12598 ispsmet 12963 isxms 13091 isms 13093 xmspropd 13117 mspropd 13118 |
Copyright terms: Public domain | W3C validator |