ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sqxpeqd Unicode version

Theorem sqxpeqd 4745
Description: Equality deduction for a Cartesian square, see Wikipedia "Cartesian product", https://en.wikipedia.org/wiki/Cartesian_product#n-ary_Cartesian_power. (Contributed by AV, 13-Jan-2020.)
Hypothesis
Ref Expression
xpeq1d.1  |-  ( ph  ->  A  =  B )
Assertion
Ref Expression
sqxpeqd  |-  ( ph  ->  ( A  X.  A
)  =  ( B  X.  B ) )

Proof of Theorem sqxpeqd
StepHypRef Expression
1 xpeq1d.1 . 2  |-  ( ph  ->  A  =  B )
21, 1xpeq12d 4744 1  |-  ( ph  ->  ( A  X.  A
)  =  ( B  X.  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1395    X. cxp 4717
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-11 1552  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-opab 4146  df-xp 4725
This theorem is referenced by:  prdsval  13306  imasaddfnlemg  13347  intopsn  13400  srg1zr  13950  ispsmet  14997  isxms  15125  isms  15127  xmspropd  15151  mspropd  15152
  Copyright terms: Public domain W3C validator