ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isxms Unicode version

Theorem isxms 14619
Description: Express the predicate " <. X ,  D >. is an extended metric space" with underlying set  X and distance function  D. (Contributed by Mario Carneiro, 2-Sep-2015.)
Hypotheses
Ref Expression
isms.j  |-  J  =  ( TopOpen `  K )
isms.x  |-  X  =  ( Base `  K
)
isms.d  |-  D  =  ( ( dist `  K
)  |`  ( X  X.  X ) )
Assertion
Ref Expression
isxms  |-  ( K  e.  *MetSp  <->  ( K  e.  TopSp  /\  J  =  ( MetOpen `  D )
) )

Proof of Theorem isxms
Dummy variable  f is distinct from all other variables.
StepHypRef Expression
1 fveq2 5554 . . . 4  |-  ( f  =  K  ->  ( TopOpen
`  f )  =  ( TopOpen `  K )
)
2 isms.j . . . 4  |-  J  =  ( TopOpen `  K )
31, 2eqtr4di 2244 . . 3  |-  ( f  =  K  ->  ( TopOpen
`  f )  =  J )
4 fveq2 5554 . . . . . 6  |-  ( f  =  K  ->  ( dist `  f )  =  ( dist `  K
) )
5 fveq2 5554 . . . . . . . 8  |-  ( f  =  K  ->  ( Base `  f )  =  ( Base `  K
) )
6 isms.x . . . . . . . 8  |-  X  =  ( Base `  K
)
75, 6eqtr4di 2244 . . . . . . 7  |-  ( f  =  K  ->  ( Base `  f )  =  X )
87sqxpeqd 4685 . . . . . 6  |-  ( f  =  K  ->  (
( Base `  f )  X.  ( Base `  f
) )  =  ( X  X.  X ) )
94, 8reseq12d 4943 . . . . 5  |-  ( f  =  K  ->  (
( dist `  f )  |`  ( ( Base `  f
)  X.  ( Base `  f ) ) )  =  ( ( dist `  K )  |`  ( X  X.  X ) ) )
10 isms.d . . . . 5  |-  D  =  ( ( dist `  K
)  |`  ( X  X.  X ) )
119, 10eqtr4di 2244 . . . 4  |-  ( f  =  K  ->  (
( dist `  f )  |`  ( ( Base `  f
)  X.  ( Base `  f ) ) )  =  D )
1211fveq2d 5558 . . 3  |-  ( f  =  K  ->  ( MetOpen
`  ( ( dist `  f )  |`  (
( Base `  f )  X.  ( Base `  f
) ) ) )  =  ( MetOpen `  D
) )
133, 12eqeq12d 2208 . 2  |-  ( f  =  K  ->  (
( TopOpen `  f )  =  ( MetOpen `  (
( dist `  f )  |`  ( ( Base `  f
)  X.  ( Base `  f ) ) ) )  <->  J  =  ( MetOpen
`  D ) ) )
14 df-xms 14507 . 2  |-  *MetSp  =  { f  e.  TopSp  |  ( TopOpen `  f )  =  ( MetOpen `  (
( dist `  f )  |`  ( ( Base `  f
)  X.  ( Base `  f ) ) ) ) }
1513, 14elrab2 2919 1  |-  ( K  e.  *MetSp  <->  ( K  e.  TopSp  /\  J  =  ( MetOpen `  D )
) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2164    X. cxp 4657    |` cres 4661   ` cfv 5254   Basecbs 12618   distcds 12704   TopOpenctopn 12851   MetOpencmopn 14037   TopSpctps 14198   *MetSpcxms 14504
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-rex 2478  df-rab 2481  df-v 2762  df-un 3157  df-in 3159  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-xp 4665  df-res 4671  df-iota 5215  df-fv 5262  df-xms 14507
This theorem is referenced by:  isxms2  14620  xmstopn  14623  xmstps  14625  xmspropd  14645
  Copyright terms: Public domain W3C validator