ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isxms Unicode version

Theorem isxms 15038
Description: Express the predicate " <. X ,  D >. is an extended metric space" with underlying set  X and distance function  D. (Contributed by Mario Carneiro, 2-Sep-2015.)
Hypotheses
Ref Expression
isms.j  |-  J  =  ( TopOpen `  K )
isms.x  |-  X  =  ( Base `  K
)
isms.d  |-  D  =  ( ( dist `  K
)  |`  ( X  X.  X ) )
Assertion
Ref Expression
isxms  |-  ( K  e.  *MetSp  <->  ( K  e.  TopSp  /\  J  =  ( MetOpen `  D )
) )

Proof of Theorem isxms
Dummy variable  f is distinct from all other variables.
StepHypRef Expression
1 fveq2 5599 . . . 4  |-  ( f  =  K  ->  ( TopOpen
`  f )  =  ( TopOpen `  K )
)
2 isms.j . . . 4  |-  J  =  ( TopOpen `  K )
31, 2eqtr4di 2258 . . 3  |-  ( f  =  K  ->  ( TopOpen
`  f )  =  J )
4 fveq2 5599 . . . . . 6  |-  ( f  =  K  ->  ( dist `  f )  =  ( dist `  K
) )
5 fveq2 5599 . . . . . . . 8  |-  ( f  =  K  ->  ( Base `  f )  =  ( Base `  K
) )
6 isms.x . . . . . . . 8  |-  X  =  ( Base `  K
)
75, 6eqtr4di 2258 . . . . . . 7  |-  ( f  =  K  ->  ( Base `  f )  =  X )
87sqxpeqd 4719 . . . . . 6  |-  ( f  =  K  ->  (
( Base `  f )  X.  ( Base `  f
) )  =  ( X  X.  X ) )
94, 8reseq12d 4979 . . . . 5  |-  ( f  =  K  ->  (
( dist `  f )  |`  ( ( Base `  f
)  X.  ( Base `  f ) ) )  =  ( ( dist `  K )  |`  ( X  X.  X ) ) )
10 isms.d . . . . 5  |-  D  =  ( ( dist `  K
)  |`  ( X  X.  X ) )
119, 10eqtr4di 2258 . . . 4  |-  ( f  =  K  ->  (
( dist `  f )  |`  ( ( Base `  f
)  X.  ( Base `  f ) ) )  =  D )
1211fveq2d 5603 . . 3  |-  ( f  =  K  ->  ( MetOpen
`  ( ( dist `  f )  |`  (
( Base `  f )  X.  ( Base `  f
) ) ) )  =  ( MetOpen `  D
) )
133, 12eqeq12d 2222 . 2  |-  ( f  =  K  ->  (
( TopOpen `  f )  =  ( MetOpen `  (
( dist `  f )  |`  ( ( Base `  f
)  X.  ( Base `  f ) ) ) )  <->  J  =  ( MetOpen
`  D ) ) )
14 df-xms 14926 . 2  |-  *MetSp  =  { f  e.  TopSp  |  ( TopOpen `  f )  =  ( MetOpen `  (
( dist `  f )  |`  ( ( Base `  f
)  X.  ( Base `  f ) ) ) ) }
1513, 14elrab2 2939 1  |-  ( K  e.  *MetSp  <->  ( K  e.  TopSp  /\  J  =  ( MetOpen `  D )
) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    = wceq 1373    e. wcel 2178    X. cxp 4691    |` cres 4695   ` cfv 5290   Basecbs 12947   distcds 13033   TopOpenctopn 13187   MetOpencmopn 14418   TopSpctps 14617   *MetSpcxms 14923
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-rex 2492  df-rab 2495  df-v 2778  df-un 3178  df-in 3180  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-br 4060  df-opab 4122  df-xp 4699  df-res 4705  df-iota 5251  df-fv 5298  df-xms 14926
This theorem is referenced by:  isxms2  15039  xmstopn  15042  xmstps  15044  xmspropd  15064
  Copyright terms: Public domain W3C validator