Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > xpeq12d | Unicode version |
Description: Equality deduction for Cartesian product. (Contributed by NM, 8-Dec-2013.) |
Ref | Expression |
---|---|
xpeq1d.1 | |
xpeq12d.2 |
Ref | Expression |
---|---|
xpeq12d |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpeq1d.1 | . 2 | |
2 | xpeq12d.2 | . 2 | |
3 | xpeq12 4630 | . 2 | |
4 | 1, 2, 3 | syl2anc 409 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wceq 1348 cxp 4609 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-11 1499 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-opab 4051 df-xp 4617 |
This theorem is referenced by: sqxpeqd 4637 opeliunxp 4666 mpomptsx 6176 dmmpossx 6178 fmpox 6179 disjxp1 6215 erssxp 6536 cc2lem 7228 cc2 7229 fsum2dlemstep 11397 fisumcom2 11401 fprod2dlemstep 11585 fprodcom2fi 11589 txbas 13052 |
Copyright terms: Public domain | W3C validator |