ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xpeq12d Unicode version

Theorem xpeq12d 4743
Description: Equality deduction for Cartesian product. (Contributed by NM, 8-Dec-2013.)
Hypotheses
Ref Expression
xpeq1d.1  |-  ( ph  ->  A  =  B )
xpeq12d.2  |-  ( ph  ->  C  =  D )
Assertion
Ref Expression
xpeq12d  |-  ( ph  ->  ( A  X.  C
)  =  ( B  X.  D ) )

Proof of Theorem xpeq12d
StepHypRef Expression
1 xpeq1d.1 . 2  |-  ( ph  ->  A  =  B )
2 xpeq12d.2 . 2  |-  ( ph  ->  C  =  D )
3 xpeq12 4737 . 2  |-  ( ( A  =  B  /\  C  =  D )  ->  ( A  X.  C
)  =  ( B  X.  D ) )
41, 2, 3syl2anc 411 1  |-  ( ph  ->  ( A  X.  C
)  =  ( B  X.  D ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1395    X. cxp 4716
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-11 1552  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-opab 4145  df-xp 4724
This theorem is referenced by:  sqxpeqd  4744  opeliunxp  4773  mpomptsx  6341  dmmpossx  6343  fmpox  6344  disjxp1  6380  erssxp  6701  cc2lem  7448  cc2  7449  fsum2dlemstep  11940  fisumcom2  11944  fprod2dlemstep  12128  fprodcom2fi  12132  psrval  14624  txbas  14926
  Copyright terms: Public domain W3C validator