Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > xpeq12d | Unicode version |
Description: Equality deduction for Cartesian product. (Contributed by NM, 8-Dec-2013.) |
Ref | Expression |
---|---|
xpeq1d.1 | |
xpeq12d.2 |
Ref | Expression |
---|---|
xpeq12d |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpeq1d.1 | . 2 | |
2 | xpeq12d.2 | . 2 | |
3 | xpeq12 4623 | . 2 | |
4 | 1, 2, 3 | syl2anc 409 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wceq 1343 cxp 4602 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-11 1494 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-opab 4044 df-xp 4610 |
This theorem is referenced by: sqxpeqd 4630 opeliunxp 4659 mpomptsx 6165 dmmpossx 6167 fmpox 6168 disjxp1 6204 erssxp 6524 cc2lem 7207 cc2 7208 fsum2dlemstep 11375 fisumcom2 11379 fprod2dlemstep 11563 fprodcom2fi 11567 txbas 12908 |
Copyright terms: Public domain | W3C validator |