ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xpeq12d Unicode version

Theorem xpeq12d 4685
Description: Equality deduction for Cartesian product. (Contributed by NM, 8-Dec-2013.)
Hypotheses
Ref Expression
xpeq1d.1  |-  ( ph  ->  A  =  B )
xpeq12d.2  |-  ( ph  ->  C  =  D )
Assertion
Ref Expression
xpeq12d  |-  ( ph  ->  ( A  X.  C
)  =  ( B  X.  D ) )

Proof of Theorem xpeq12d
StepHypRef Expression
1 xpeq1d.1 . 2  |-  ( ph  ->  A  =  B )
2 xpeq12d.2 . 2  |-  ( ph  ->  C  =  D )
3 xpeq12 4679 . 2  |-  ( ( A  =  B  /\  C  =  D )  ->  ( A  X.  C
)  =  ( B  X.  D ) )
41, 2, 3syl2anc 411 1  |-  ( ph  ->  ( A  X.  C
)  =  ( B  X.  D ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    X. cxp 4658
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-11 1517  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-opab 4092  df-xp 4666
This theorem is referenced by:  sqxpeqd  4686  opeliunxp  4715  mpomptsx  6252  dmmpossx  6254  fmpox  6255  disjxp1  6291  erssxp  6612  cc2lem  7328  cc2  7329  fsum2dlemstep  11580  fisumcom2  11584  fprod2dlemstep  11768  fprodcom2fi  11772  psrval  14163  txbas  14437
  Copyright terms: Public domain W3C validator