ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xpeq12d Unicode version

Theorem xpeq12d 4699
Description: Equality deduction for Cartesian product. (Contributed by NM, 8-Dec-2013.)
Hypotheses
Ref Expression
xpeq1d.1  |-  ( ph  ->  A  =  B )
xpeq12d.2  |-  ( ph  ->  C  =  D )
Assertion
Ref Expression
xpeq12d  |-  ( ph  ->  ( A  X.  C
)  =  ( B  X.  D ) )

Proof of Theorem xpeq12d
StepHypRef Expression
1 xpeq1d.1 . 2  |-  ( ph  ->  A  =  B )
2 xpeq12d.2 . 2  |-  ( ph  ->  C  =  D )
3 xpeq12 4693 . 2  |-  ( ( A  =  B  /\  C  =  D )  ->  ( A  X.  C
)  =  ( B  X.  D ) )
41, 2, 3syl2anc 411 1  |-  ( ph  ->  ( A  X.  C
)  =  ( B  X.  D ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1372    X. cxp 4672
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-11 1528  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-opab 4105  df-xp 4680
This theorem is referenced by:  sqxpeqd  4700  opeliunxp  4729  mpomptsx  6282  dmmpossx  6284  fmpox  6285  disjxp1  6321  erssxp  6642  cc2lem  7377  cc2  7378  fsum2dlemstep  11716  fisumcom2  11720  fprod2dlemstep  11904  fprodcom2fi  11908  psrval  14399  txbas  14701
  Copyright terms: Public domain W3C validator