ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xpeq12d Unicode version

Theorem xpeq12d 4629
Description: Equality deduction for Cartesian product. (Contributed by NM, 8-Dec-2013.)
Hypotheses
Ref Expression
xpeq1d.1  |-  ( ph  ->  A  =  B )
xpeq12d.2  |-  ( ph  ->  C  =  D )
Assertion
Ref Expression
xpeq12d  |-  ( ph  ->  ( A  X.  C
)  =  ( B  X.  D ) )

Proof of Theorem xpeq12d
StepHypRef Expression
1 xpeq1d.1 . 2  |-  ( ph  ->  A  =  B )
2 xpeq12d.2 . 2  |-  ( ph  ->  C  =  D )
3 xpeq12 4623 . 2  |-  ( ( A  =  B  /\  C  =  D )  ->  ( A  X.  C
)  =  ( B  X.  D ) )
41, 2, 3syl2anc 409 1  |-  ( ph  ->  ( A  X.  C
)  =  ( B  X.  D ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1343    X. cxp 4602
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-11 1494  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-opab 4044  df-xp 4610
This theorem is referenced by:  sqxpeqd  4630  opeliunxp  4659  mpomptsx  6165  dmmpossx  6167  fmpox  6168  disjxp1  6204  erssxp  6524  cc2lem  7207  cc2  7208  fsum2dlemstep  11375  fisumcom2  11379  fprod2dlemstep  11563  fprodcom2fi  11567  txbas  12908
  Copyright terms: Public domain W3C validator