ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isms Unicode version

Theorem isms 12436
Description: Express the predicate " <. X ,  D >. is a metric space" with underlying set  X and distance function  D. (Contributed by NM, 27-Aug-2006.) (Revised by Mario Carneiro, 24-Aug-2015.)
Hypotheses
Ref Expression
isms.j  |-  J  =  ( TopOpen `  K )
isms.x  |-  X  =  ( Base `  K
)
isms.d  |-  D  =  ( ( dist `  K
)  |`  ( X  X.  X ) )
Assertion
Ref Expression
isms  |-  ( K  e.  MetSp 
<->  ( K  e.  *MetSp  /\  D  e.  ( Met `  X ) ) )

Proof of Theorem isms
Dummy variable  f is distinct from all other variables.
StepHypRef Expression
1 fveq2 5373 . . . . 5  |-  ( f  =  K  ->  ( dist `  f )  =  ( dist `  K
) )
2 fveq2 5373 . . . . . . 7  |-  ( f  =  K  ->  ( Base `  f )  =  ( Base `  K
) )
3 isms.x . . . . . . 7  |-  X  =  ( Base `  K
)
42, 3syl6eqr 2163 . . . . . 6  |-  ( f  =  K  ->  ( Base `  f )  =  X )
54sqxpeqd 4523 . . . . 5  |-  ( f  =  K  ->  (
( Base `  f )  X.  ( Base `  f
) )  =  ( X  X.  X ) )
61, 5reseq12d 4776 . . . 4  |-  ( f  =  K  ->  (
( dist `  f )  |`  ( ( Base `  f
)  X.  ( Base `  f ) ) )  =  ( ( dist `  K )  |`  ( X  X.  X ) ) )
7 isms.d . . . 4  |-  D  =  ( ( dist `  K
)  |`  ( X  X.  X ) )
86, 7syl6eqr 2163 . . 3  |-  ( f  =  K  ->  (
( dist `  f )  |`  ( ( Base `  f
)  X.  ( Base `  f ) ) )  =  D )
94fveq2d 5377 . . 3  |-  ( f  =  K  ->  ( Met `  ( Base `  f
) )  =  ( Met `  X ) )
108, 9eleq12d 2183 . 2  |-  ( f  =  K  ->  (
( ( dist `  f
)  |`  ( ( Base `  f )  X.  ( Base `  f ) ) )  e.  ( Met `  ( Base `  f
) )  <->  D  e.  ( Met `  X ) ) )
11 df-ms 12323 . 2  |-  MetSp  =  {
f  e.  *MetSp  |  ( ( dist `  f
)  |`  ( ( Base `  f )  X.  ( Base `  f ) ) )  e.  ( Met `  ( Base `  f
) ) }
1210, 11elrab2 2810 1  |-  ( K  e.  MetSp 
<->  ( K  e.  *MetSp  /\  D  e.  ( Met `  X ) ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 103    <-> wb 104    = wceq 1312    e. wcel 1461    X. cxp 4495    |` cres 4499   ` cfv 5079   Basecbs 11796   distcds 11867   TopOpenctopn 11958   Metcmet 11987   *MetSpcxms 12319   MetSpcms 12320
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 681  ax-5 1404  ax-7 1405  ax-gen 1406  ax-ie1 1450  ax-ie2 1451  ax-8 1463  ax-10 1464  ax-11 1465  ax-i12 1466  ax-bndl 1467  ax-4 1468  ax-17 1487  ax-i9 1491  ax-ial 1495  ax-i5r 1496  ax-ext 2095
This theorem depends on definitions:  df-bi 116  df-3an 945  df-tru 1315  df-nf 1418  df-sb 1717  df-clab 2100  df-cleq 2106  df-clel 2109  df-nfc 2242  df-rex 2394  df-rab 2397  df-v 2657  df-un 3039  df-in 3041  df-sn 3497  df-pr 3498  df-op 3500  df-uni 3701  df-br 3894  df-opab 3948  df-xp 4503  df-res 4509  df-iota 5044  df-fv 5087  df-ms 12323
This theorem is referenced by:  isms2  12437  msxms  12441  mspropd  12461
  Copyright terms: Public domain W3C validator