ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isms Unicode version

Theorem isms 14621
Description: Express the predicate " <. X ,  D >. is a metric space" with underlying set  X and distance function  D. (Contributed by NM, 27-Aug-2006.) (Revised by Mario Carneiro, 24-Aug-2015.)
Hypotheses
Ref Expression
isms.j  |-  J  =  ( TopOpen `  K )
isms.x  |-  X  =  ( Base `  K
)
isms.d  |-  D  =  ( ( dist `  K
)  |`  ( X  X.  X ) )
Assertion
Ref Expression
isms  |-  ( K  e.  MetSp 
<->  ( K  e.  *MetSp  /\  D  e.  ( Met `  X ) ) )

Proof of Theorem isms
Dummy variable  f is distinct from all other variables.
StepHypRef Expression
1 fveq2 5554 . . . . 5  |-  ( f  =  K  ->  ( dist `  f )  =  ( dist `  K
) )
2 fveq2 5554 . . . . . . 7  |-  ( f  =  K  ->  ( Base `  f )  =  ( Base `  K
) )
3 isms.x . . . . . . 7  |-  X  =  ( Base `  K
)
42, 3eqtr4di 2244 . . . . . 6  |-  ( f  =  K  ->  ( Base `  f )  =  X )
54sqxpeqd 4685 . . . . 5  |-  ( f  =  K  ->  (
( Base `  f )  X.  ( Base `  f
) )  =  ( X  X.  X ) )
61, 5reseq12d 4943 . . . 4  |-  ( f  =  K  ->  (
( dist `  f )  |`  ( ( Base `  f
)  X.  ( Base `  f ) ) )  =  ( ( dist `  K )  |`  ( X  X.  X ) ) )
7 isms.d . . . 4  |-  D  =  ( ( dist `  K
)  |`  ( X  X.  X ) )
86, 7eqtr4di 2244 . . 3  |-  ( f  =  K  ->  (
( dist `  f )  |`  ( ( Base `  f
)  X.  ( Base `  f ) ) )  =  D )
94fveq2d 5558 . . 3  |-  ( f  =  K  ->  ( Met `  ( Base `  f
) )  =  ( Met `  X ) )
108, 9eleq12d 2264 . 2  |-  ( f  =  K  ->  (
( ( dist `  f
)  |`  ( ( Base `  f )  X.  ( Base `  f ) ) )  e.  ( Met `  ( Base `  f
) )  <->  D  e.  ( Met `  X ) ) )
11 df-ms 14508 . 2  |-  MetSp  =  {
f  e.  *MetSp  |  ( ( dist `  f
)  |`  ( ( Base `  f )  X.  ( Base `  f ) ) )  e.  ( Met `  ( Base `  f
) ) }
1210, 11elrab2 2919 1  |-  ( K  e.  MetSp 
<->  ( K  e.  *MetSp  /\  D  e.  ( Met `  X ) ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2164    X. cxp 4657    |` cres 4661   ` cfv 5254   Basecbs 12618   distcds 12704   TopOpenctopn 12851   Metcmet 14033   *MetSpcxms 14504   MetSpcms 14505
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-rex 2478  df-rab 2481  df-v 2762  df-un 3157  df-in 3159  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-xp 4665  df-res 4671  df-iota 5215  df-fv 5262  df-ms 14508
This theorem is referenced by:  isms2  14622  msxms  14626  mspropd  14646
  Copyright terms: Public domain W3C validator