| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > isms | Unicode version | ||
| Description: Express the predicate
" |
| Ref | Expression |
|---|---|
| isms.j |
|
| isms.x |
|
| isms.d |
|
| Ref | Expression |
|---|---|
| isms |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 5558 |
. . . . 5
| |
| 2 | fveq2 5558 |
. . . . . . 7
| |
| 3 | isms.x |
. . . . . . 7
| |
| 4 | 2, 3 | eqtr4di 2247 |
. . . . . 6
|
| 5 | 4 | sqxpeqd 4689 |
. . . . 5
|
| 6 | 1, 5 | reseq12d 4947 |
. . . 4
|
| 7 | isms.d |
. . . 4
| |
| 8 | 6, 7 | eqtr4di 2247 |
. . 3
|
| 9 | 4 | fveq2d 5562 |
. . 3
|
| 10 | 8, 9 | eleq12d 2267 |
. 2
|
| 11 | df-ms 14576 |
. 2
| |
| 12 | 10, 11 | elrab2 2923 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rex 2481 df-rab 2484 df-v 2765 df-un 3161 df-in 3163 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-xp 4669 df-res 4675 df-iota 5219 df-fv 5266 df-ms 14576 |
| This theorem is referenced by: isms2 14690 msxms 14694 mspropd 14714 |
| Copyright terms: Public domain | W3C validator |