ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isms Unicode version

Theorem isms 15127
Description: Express the predicate " <. X ,  D >. is a metric space" with underlying set  X and distance function  D. (Contributed by NM, 27-Aug-2006.) (Revised by Mario Carneiro, 24-Aug-2015.)
Hypotheses
Ref Expression
isms.j  |-  J  =  ( TopOpen `  K )
isms.x  |-  X  =  ( Base `  K
)
isms.d  |-  D  =  ( ( dist `  K
)  |`  ( X  X.  X ) )
Assertion
Ref Expression
isms  |-  ( K  e.  MetSp 
<->  ( K  e.  *MetSp  /\  D  e.  ( Met `  X ) ) )

Proof of Theorem isms
Dummy variable  f is distinct from all other variables.
StepHypRef Expression
1 fveq2 5627 . . . . 5  |-  ( f  =  K  ->  ( dist `  f )  =  ( dist `  K
) )
2 fveq2 5627 . . . . . . 7  |-  ( f  =  K  ->  ( Base `  f )  =  ( Base `  K
) )
3 isms.x . . . . . . 7  |-  X  =  ( Base `  K
)
42, 3eqtr4di 2280 . . . . . 6  |-  ( f  =  K  ->  ( Base `  f )  =  X )
54sqxpeqd 4745 . . . . 5  |-  ( f  =  K  ->  (
( Base `  f )  X.  ( Base `  f
) )  =  ( X  X.  X ) )
61, 5reseq12d 5006 . . . 4  |-  ( f  =  K  ->  (
( dist `  f )  |`  ( ( Base `  f
)  X.  ( Base `  f ) ) )  =  ( ( dist `  K )  |`  ( X  X.  X ) ) )
7 isms.d . . . 4  |-  D  =  ( ( dist `  K
)  |`  ( X  X.  X ) )
86, 7eqtr4di 2280 . . 3  |-  ( f  =  K  ->  (
( dist `  f )  |`  ( ( Base `  f
)  X.  ( Base `  f ) ) )  =  D )
94fveq2d 5631 . . 3  |-  ( f  =  K  ->  ( Met `  ( Base `  f
) )  =  ( Met `  X ) )
108, 9eleq12d 2300 . 2  |-  ( f  =  K  ->  (
( ( dist `  f
)  |`  ( ( Base `  f )  X.  ( Base `  f ) ) )  e.  ( Met `  ( Base `  f
) )  <->  D  e.  ( Met `  X ) ) )
11 df-ms 15014 . 2  |-  MetSp  =  {
f  e.  *MetSp  |  ( ( dist `  f
)  |`  ( ( Base `  f )  X.  ( Base `  f ) ) )  e.  ( Met `  ( Base `  f
) ) }
1210, 11elrab2 2962 1  |-  ( K  e.  MetSp 
<->  ( K  e.  *MetSp  /\  D  e.  ( Met `  X ) ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    = wceq 1395    e. wcel 2200    X. cxp 4717    |` cres 4721   ` cfv 5318   Basecbs 13032   distcds 13119   TopOpenctopn 13273   Metcmet 14501   *MetSpcxms 15010   MetSpcms 15011
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-rex 2514  df-rab 2517  df-v 2801  df-un 3201  df-in 3203  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-xp 4725  df-res 4731  df-iota 5278  df-fv 5326  df-ms 15014
This theorem is referenced by:  isms2  15128  msxms  15132  mspropd  15152
  Copyright terms: Public domain W3C validator