| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ispsmet | Unicode version | ||
| Description: Express the predicate
" |
| Ref | Expression |
|---|---|
| ispsmet |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-psmet 14501 |
. . . . 5
| |
| 2 | id 19 |
. . . . . . . 8
| |
| 3 | 2 | sqxpeqd 4744 |
. . . . . . 7
|
| 4 | 3 | oveq2d 6016 |
. . . . . 6
|
| 5 | raleq 2728 |
. . . . . . . . 9
| |
| 6 | 5 | raleqbi1dv 2740 |
. . . . . . . 8
|
| 7 | 6 | anbi2d 464 |
. . . . . . 7
|
| 8 | 7 | raleqbi1dv 2740 |
. . . . . 6
|
| 9 | 4, 8 | rabeqbidv 2794 |
. . . . 5
|
| 10 | elex 2811 |
. . . . 5
| |
| 11 | xrex 10048 |
. . . . . . . 8
| |
| 12 | sqxpexg 4834 |
. . . . . . . 8
| |
| 13 | mapvalg 6803 |
. . . . . . . 8
| |
| 14 | 11, 12, 13 | sylancr 414 |
. . . . . . 7
|
| 15 | mapex 6799 |
. . . . . . . 8
| |
| 16 | 12, 11, 15 | sylancl 413 |
. . . . . . 7
|
| 17 | 14, 16 | eqeltrd 2306 |
. . . . . 6
|
| 18 | rabexg 4226 |
. . . . . 6
| |
| 19 | 17, 18 | syl 14 |
. . . . 5
|
| 20 | 1, 9, 10, 19 | fvmptd3 5727 |
. . . 4
|
| 21 | 20 | eleq2d 2299 |
. . 3
|
| 22 | oveq 6006 |
. . . . . . 7
| |
| 23 | 22 | eqeq1d 2238 |
. . . . . 6
|
| 24 | oveq 6006 |
. . . . . . . 8
| |
| 25 | oveq 6006 |
. . . . . . . . 9
| |
| 26 | oveq 6006 |
. . . . . . . . 9
| |
| 27 | 25, 26 | oveq12d 6018 |
. . . . . . . 8
|
| 28 | 24, 27 | breq12d 4095 |
. . . . . . 7
|
| 29 | 28 | 2ralbidv 2554 |
. . . . . 6
|
| 30 | 23, 29 | anbi12d 473 |
. . . . 5
|
| 31 | 30 | ralbidv 2530 |
. . . 4
|
| 32 | 31 | elrab 2959 |
. . 3
|
| 33 | 21, 32 | bitrdi 196 |
. 2
|
| 34 | elmapg 6806 |
. . . 4
| |
| 35 | 11, 12, 34 | sylancr 414 |
. . 3
|
| 36 | 35 | anbi1d 465 |
. 2
|
| 37 | 33, 36 | bitrd 188 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-cnex 8086 ax-resscn 8087 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-fv 5325 df-ov 6003 df-oprab 6004 df-mpo 6005 df-map 6795 df-pnf 8179 df-mnf 8180 df-xr 8181 df-psmet 14501 |
| This theorem is referenced by: psmetdmdm 14992 psmetf 14993 psmet0 14995 psmettri2 14996 psmetres2 15001 xmetpsmet 15037 |
| Copyright terms: Public domain | W3C validator |