| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ispsmet | Unicode version | ||
| Description: Express the predicate
" |
| Ref | Expression |
|---|---|
| ispsmet |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-psmet 14247 |
. . . . 5
| |
| 2 | id 19 |
. . . . . . . 8
| |
| 3 | 2 | sqxpeqd 4700 |
. . . . . . 7
|
| 4 | 3 | oveq2d 5959 |
. . . . . 6
|
| 5 | raleq 2701 |
. . . . . . . . 9
| |
| 6 | 5 | raleqbi1dv 2713 |
. . . . . . . 8
|
| 7 | 6 | anbi2d 464 |
. . . . . . 7
|
| 8 | 7 | raleqbi1dv 2713 |
. . . . . 6
|
| 9 | 4, 8 | rabeqbidv 2766 |
. . . . 5
|
| 10 | elex 2782 |
. . . . 5
| |
| 11 | xrex 9977 |
. . . . . . . 8
| |
| 12 | sqxpexg 4790 |
. . . . . . . 8
| |
| 13 | mapvalg 6744 |
. . . . . . . 8
| |
| 14 | 11, 12, 13 | sylancr 414 |
. . . . . . 7
|
| 15 | mapex 6740 |
. . . . . . . 8
| |
| 16 | 12, 11, 15 | sylancl 413 |
. . . . . . 7
|
| 17 | 14, 16 | eqeltrd 2281 |
. . . . . 6
|
| 18 | rabexg 4186 |
. . . . . 6
| |
| 19 | 17, 18 | syl 14 |
. . . . 5
|
| 20 | 1, 9, 10, 19 | fvmptd3 5672 |
. . . 4
|
| 21 | 20 | eleq2d 2274 |
. . 3
|
| 22 | oveq 5949 |
. . . . . . 7
| |
| 23 | 22 | eqeq1d 2213 |
. . . . . 6
|
| 24 | oveq 5949 |
. . . . . . . 8
| |
| 25 | oveq 5949 |
. . . . . . . . 9
| |
| 26 | oveq 5949 |
. . . . . . . . 9
| |
| 27 | 25, 26 | oveq12d 5961 |
. . . . . . . 8
|
| 28 | 24, 27 | breq12d 4056 |
. . . . . . 7
|
| 29 | 28 | 2ralbidv 2529 |
. . . . . 6
|
| 30 | 23, 29 | anbi12d 473 |
. . . . 5
|
| 31 | 30 | ralbidv 2505 |
. . . 4
|
| 32 | 31 | elrab 2928 |
. . 3
|
| 33 | 21, 32 | bitrdi 196 |
. 2
|
| 34 | elmapg 6747 |
. . . 4
| |
| 35 | 11, 12, 34 | sylancr 414 |
. . 3
|
| 36 | 35 | anbi1d 465 |
. 2
|
| 37 | 33, 36 | bitrd 188 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-un 4479 ax-setind 4584 ax-cnex 8015 ax-resscn 8016 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-ral 2488 df-rex 2489 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-br 4044 df-opab 4105 df-mpt 4106 df-id 4339 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-iota 5231 df-fun 5272 df-fn 5273 df-f 5274 df-fv 5278 df-ov 5946 df-oprab 5947 df-mpo 5948 df-map 6736 df-pnf 8108 df-mnf 8109 df-xr 8110 df-psmet 14247 |
| This theorem is referenced by: psmetdmdm 14738 psmetf 14739 psmet0 14741 psmettri2 14742 psmetres2 14747 xmetpsmet 14783 |
| Copyright terms: Public domain | W3C validator |