| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ispsmet | Unicode version | ||
| Description: Express the predicate
" |
| Ref | Expression |
|---|---|
| ispsmet |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-psmet 14380 |
. . . . 5
| |
| 2 | id 19 |
. . . . . . . 8
| |
| 3 | 2 | sqxpeqd 4709 |
. . . . . . 7
|
| 4 | 3 | oveq2d 5973 |
. . . . . 6
|
| 5 | raleq 2703 |
. . . . . . . . 9
| |
| 6 | 5 | raleqbi1dv 2715 |
. . . . . . . 8
|
| 7 | 6 | anbi2d 464 |
. . . . . . 7
|
| 8 | 7 | raleqbi1dv 2715 |
. . . . . 6
|
| 9 | 4, 8 | rabeqbidv 2768 |
. . . . 5
|
| 10 | elex 2785 |
. . . . 5
| |
| 11 | xrex 9998 |
. . . . . . . 8
| |
| 12 | sqxpexg 4799 |
. . . . . . . 8
| |
| 13 | mapvalg 6758 |
. . . . . . . 8
| |
| 14 | 11, 12, 13 | sylancr 414 |
. . . . . . 7
|
| 15 | mapex 6754 |
. . . . . . . 8
| |
| 16 | 12, 11, 15 | sylancl 413 |
. . . . . . 7
|
| 17 | 14, 16 | eqeltrd 2283 |
. . . . . 6
|
| 18 | rabexg 4195 |
. . . . . 6
| |
| 19 | 17, 18 | syl 14 |
. . . . 5
|
| 20 | 1, 9, 10, 19 | fvmptd3 5686 |
. . . 4
|
| 21 | 20 | eleq2d 2276 |
. . 3
|
| 22 | oveq 5963 |
. . . . . . 7
| |
| 23 | 22 | eqeq1d 2215 |
. . . . . 6
|
| 24 | oveq 5963 |
. . . . . . . 8
| |
| 25 | oveq 5963 |
. . . . . . . . 9
| |
| 26 | oveq 5963 |
. . . . . . . . 9
| |
| 27 | 25, 26 | oveq12d 5975 |
. . . . . . . 8
|
| 28 | 24, 27 | breq12d 4064 |
. . . . . . 7
|
| 29 | 28 | 2ralbidv 2531 |
. . . . . 6
|
| 30 | 23, 29 | anbi12d 473 |
. . . . 5
|
| 31 | 30 | ralbidv 2507 |
. . . 4
|
| 32 | 31 | elrab 2933 |
. . 3
|
| 33 | 21, 32 | bitrdi 196 |
. 2
|
| 34 | elmapg 6761 |
. . . 4
| |
| 35 | 11, 12, 34 | sylancr 414 |
. . 3
|
| 36 | 35 | anbi1d 465 |
. 2
|
| 37 | 33, 36 | bitrd 188 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4170 ax-pow 4226 ax-pr 4261 ax-un 4488 ax-setind 4593 ax-cnex 8036 ax-resscn 8037 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-br 4052 df-opab 4114 df-mpt 4115 df-id 4348 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-rn 4694 df-iota 5241 df-fun 5282 df-fn 5283 df-f 5284 df-fv 5288 df-ov 5960 df-oprab 5961 df-mpo 5962 df-map 6750 df-pnf 8129 df-mnf 8130 df-xr 8131 df-psmet 14380 |
| This theorem is referenced by: psmetdmdm 14871 psmetf 14872 psmet0 14874 psmettri2 14875 psmetres2 14880 xmetpsmet 14916 |
| Copyright terms: Public domain | W3C validator |