ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ispsmet Unicode version

Theorem ispsmet 12529
Description: Express the predicate " D is a pseudometric." (Contributed by Thierry Arnoux, 7-Feb-2018.)
Assertion
Ref Expression
ispsmet  |-  ( X  e.  V  ->  ( D  e.  (PsMet `  X
)  <->  ( D :
( X  X.  X
) --> RR*  /\  A. x  e.  X  ( (
x D x )  =  0  /\  A. y  e.  X  A. z  e.  X  (
x D y )  <_  ( ( z D x ) +e ( z D y ) ) ) ) ) )
Distinct variable groups:    x, y, z, X    x, D, y, z
Allowed substitution hints:    V( x, y, z)

Proof of Theorem ispsmet
Dummy variables  u  d  f are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-psmet 12193 . . . . 5  |- PsMet  =  ( u  e.  _V  |->  { d  e.  ( RR*  ^m  ( u  X.  u
) )  |  A. x  e.  u  (
( x d x )  =  0  /\ 
A. y  e.  u  A. z  e.  u  ( x d y )  <_  ( (
z d x ) +e ( z d y ) ) ) } )
2 id 19 . . . . . . . 8  |-  ( u  =  X  ->  u  =  X )
32sqxpeqd 4572 . . . . . . 7  |-  ( u  =  X  ->  (
u  X.  u )  =  ( X  X.  X ) )
43oveq2d 5797 . . . . . 6  |-  ( u  =  X  ->  ( RR*  ^m  ( u  X.  u ) )  =  ( RR*  ^m  ( X  X.  X ) ) )
5 raleq 2629 . . . . . . . . 9  |-  ( u  =  X  ->  ( A. z  e.  u  ( x d y )  <_  ( (
z d x ) +e ( z d y ) )  <->  A. z  e.  X  ( x d y )  <_  ( (
z d x ) +e ( z d y ) ) ) )
65raleqbi1dv 2637 . . . . . . . 8  |-  ( u  =  X  ->  ( A. y  e.  u  A. z  e.  u  ( x d y )  <_  ( (
z d x ) +e ( z d y ) )  <->  A. y  e.  X  A. z  e.  X  ( x d y )  <_  ( (
z d x ) +e ( z d y ) ) ) )
76anbi2d 460 . . . . . . 7  |-  ( u  =  X  ->  (
( ( x d x )  =  0  /\  A. y  e.  u  A. z  e.  u  ( x d y )  <_  (
( z d x ) +e ( z d y ) ) )  <->  ( (
x d x )  =  0  /\  A. y  e.  X  A. z  e.  X  (
x d y )  <_  ( ( z d x ) +e ( z d y ) ) ) ) )
87raleqbi1dv 2637 . . . . . 6  |-  ( u  =  X  ->  ( A. x  e.  u  ( ( x d x )  =  0  /\  A. y  e.  u  A. z  e.  u  ( x d y )  <_  (
( z d x ) +e ( z d y ) ) )  <->  A. x  e.  X  ( (
x d x )  =  0  /\  A. y  e.  X  A. z  e.  X  (
x d y )  <_  ( ( z d x ) +e ( z d y ) ) ) ) )
94, 8rabeqbidv 2684 . . . . 5  |-  ( u  =  X  ->  { d  e.  ( RR*  ^m  (
u  X.  u ) )  |  A. x  e.  u  ( (
x d x )  =  0  /\  A. y  e.  u  A. z  e.  u  (
x d y )  <_  ( ( z d x ) +e ( z d y ) ) ) }  =  { d  e.  ( RR*  ^m  ( X  X.  X ) )  |  A. x  e.  X  ( ( x d x )  =  0  /\  A. y  e.  X  A. z  e.  X  ( x
d y )  <_ 
( ( z d x ) +e
( z d y ) ) ) } )
10 elex 2700 . . . . 5  |-  ( X  e.  V  ->  X  e.  _V )
11 xrex 9668 . . . . . . . 8  |-  RR*  e.  _V
12 sqxpexg 4662 . . . . . . . 8  |-  ( X  e.  V  ->  ( X  X.  X )  e. 
_V )
13 mapvalg 6559 . . . . . . . 8  |-  ( (
RR*  e.  _V  /\  ( X  X.  X )  e. 
_V )  ->  ( RR*  ^m  ( X  X.  X ) )  =  { f  |  f : ( X  X.  X ) --> RR* } )
1411, 12, 13sylancr 411 . . . . . . 7  |-  ( X  e.  V  ->  ( RR*  ^m  ( X  X.  X ) )  =  { f  |  f : ( X  X.  X ) --> RR* } )
15 mapex 6555 . . . . . . . 8  |-  ( ( ( X  X.  X
)  e.  _V  /\  RR* 
e.  _V )  ->  { f  |  f : ( X  X.  X ) -->
RR* }  e.  _V )
1612, 11, 15sylancl 410 . . . . . . 7  |-  ( X  e.  V  ->  { f  |  f : ( X  X.  X ) -->
RR* }  e.  _V )
1714, 16eqeltrd 2217 . . . . . 6  |-  ( X  e.  V  ->  ( RR*  ^m  ( X  X.  X ) )  e. 
_V )
18 rabexg 4078 . . . . . 6  |-  ( (
RR*  ^m  ( X  X.  X ) )  e. 
_V  ->  { d  e.  ( RR*  ^m  ( X  X.  X ) )  |  A. x  e.  X  ( ( x d x )  =  0  /\  A. y  e.  X  A. z  e.  X  ( x
d y )  <_ 
( ( z d x ) +e
( z d y ) ) ) }  e.  _V )
1917, 18syl 14 . . . . 5  |-  ( X  e.  V  ->  { d  e.  ( RR*  ^m  ( X  X.  X ) )  |  A. x  e.  X  ( ( x d x )  =  0  /\  A. y  e.  X  A. z  e.  X  ( x
d y )  <_ 
( ( z d x ) +e
( z d y ) ) ) }  e.  _V )
201, 9, 10, 19fvmptd3 5521 . . . 4  |-  ( X  e.  V  ->  (PsMet `  X )  =  {
d  e.  ( RR*  ^m  ( X  X.  X
) )  |  A. x  e.  X  (
( x d x )  =  0  /\ 
A. y  e.  X  A. z  e.  X  ( x d y )  <_  ( (
z d x ) +e ( z d y ) ) ) } )
2120eleq2d 2210 . . 3  |-  ( X  e.  V  ->  ( D  e.  (PsMet `  X
)  <->  D  e.  { d  e.  ( RR*  ^m  ( X  X.  X ) )  |  A. x  e.  X  ( ( x d x )  =  0  /\  A. y  e.  X  A. z  e.  X  ( x
d y )  <_ 
( ( z d x ) +e
( z d y ) ) ) } ) )
22 oveq 5787 . . . . . . 7  |-  ( d  =  D  ->  (
x d x )  =  ( x D x ) )
2322eqeq1d 2149 . . . . . 6  |-  ( d  =  D  ->  (
( x d x )  =  0  <->  (
x D x )  =  0 ) )
24 oveq 5787 . . . . . . . 8  |-  ( d  =  D  ->  (
x d y )  =  ( x D y ) )
25 oveq 5787 . . . . . . . . 9  |-  ( d  =  D  ->  (
z d x )  =  ( z D x ) )
26 oveq 5787 . . . . . . . . 9  |-  ( d  =  D  ->  (
z d y )  =  ( z D y ) )
2725, 26oveq12d 5799 . . . . . . . 8  |-  ( d  =  D  ->  (
( z d x ) +e ( z d y ) )  =  ( ( z D x ) +e ( z D y ) ) )
2824, 27breq12d 3949 . . . . . . 7  |-  ( d  =  D  ->  (
( x d y )  <_  ( (
z d x ) +e ( z d y ) )  <-> 
( x D y )  <_  ( (
z D x ) +e ( z D y ) ) ) )
29282ralbidv 2462 . . . . . 6  |-  ( d  =  D  ->  ( A. y  e.  X  A. z  e.  X  ( x d y )  <_  ( (
z d x ) +e ( z d y ) )  <->  A. y  e.  X  A. z  e.  X  ( x D y )  <_  ( (
z D x ) +e ( z D y ) ) ) )
3023, 29anbi12d 465 . . . . 5  |-  ( d  =  D  ->  (
( ( x d x )  =  0  /\  A. y  e.  X  A. z  e.  X  ( x d y )  <_  (
( z d x ) +e ( z d y ) ) )  <->  ( (
x D x )  =  0  /\  A. y  e.  X  A. z  e.  X  (
x D y )  <_  ( ( z D x ) +e ( z D y ) ) ) ) )
3130ralbidv 2438 . . . 4  |-  ( d  =  D  ->  ( A. x  e.  X  ( ( x d x )  =  0  /\  A. y  e.  X  A. z  e.  X  ( x d y )  <_  (
( z d x ) +e ( z d y ) ) )  <->  A. x  e.  X  ( (
x D x )  =  0  /\  A. y  e.  X  A. z  e.  X  (
x D y )  <_  ( ( z D x ) +e ( z D y ) ) ) ) )
3231elrab 2843 . . 3  |-  ( D  e.  { d  e.  ( RR*  ^m  ( X  X.  X ) )  |  A. x  e.  X  ( ( x d x )  =  0  /\  A. y  e.  X  A. z  e.  X  ( x
d y )  <_ 
( ( z d x ) +e
( z d y ) ) ) }  <-> 
( D  e.  (
RR*  ^m  ( X  X.  X ) )  /\  A. x  e.  X  ( ( x D x )  =  0  /\ 
A. y  e.  X  A. z  e.  X  ( x D y )  <_  ( (
z D x ) +e ( z D y ) ) ) ) )
3321, 32syl6bb 195 . 2  |-  ( X  e.  V  ->  ( D  e.  (PsMet `  X
)  <->  ( D  e.  ( RR*  ^m  ( X  X.  X ) )  /\  A. x  e.  X  ( ( x D x )  =  0  /\  A. y  e.  X  A. z  e.  X  ( x D y )  <_ 
( ( z D x ) +e
( z D y ) ) ) ) ) )
34 elmapg 6562 . . . 4  |-  ( (
RR*  e.  _V  /\  ( X  X.  X )  e. 
_V )  ->  ( D  e.  ( RR*  ^m  ( X  X.  X
) )  <->  D :
( X  X.  X
) --> RR* ) )
3511, 12, 34sylancr 411 . . 3  |-  ( X  e.  V  ->  ( D  e.  ( RR*  ^m  ( X  X.  X
) )  <->  D :
( X  X.  X
) --> RR* ) )
3635anbi1d 461 . 2  |-  ( X  e.  V  ->  (
( D  e.  (
RR*  ^m  ( X  X.  X ) )  /\  A. x  e.  X  ( ( x D x )  =  0  /\ 
A. y  e.  X  A. z  e.  X  ( x D y )  <_  ( (
z D x ) +e ( z D y ) ) ) )  <->  ( D : ( X  X.  X ) --> RR*  /\  A. x  e.  X  (
( x D x )  =  0  /\ 
A. y  e.  X  A. z  e.  X  ( x D y )  <_  ( (
z D x ) +e ( z D y ) ) ) ) ) )
3733, 36bitrd 187 1  |-  ( X  e.  V  ->  ( D  e.  (PsMet `  X
)  <->  ( D :
( X  X.  X
) --> RR*  /\  A. x  e.  X  ( (
x D x )  =  0  /\  A. y  e.  X  A. z  e.  X  (
x D y )  <_  ( ( z D x ) +e ( z D y ) ) ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1332    e. wcel 1481   {cab 2126   A.wral 2417   {crab 2421   _Vcvv 2689   class class class wbr 3936    X. cxp 4544   -->wf 5126   ` cfv 5130  (class class class)co 5781    ^m cmap 6549   0cc0 7643   RR*cxr 7822    <_ cle 7824   +ecxad 9586  PsMetcpsmet 12185
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4053  ax-pow 4105  ax-pr 4138  ax-un 4362  ax-setind 4459  ax-cnex 7734  ax-resscn 7735
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-ral 2422  df-rex 2423  df-rab 2426  df-v 2691  df-sbc 2913  df-csb 3007  df-dif 3077  df-un 3079  df-in 3081  df-ss 3088  df-pw 3516  df-sn 3537  df-pr 3538  df-op 3540  df-uni 3744  df-br 3937  df-opab 3997  df-mpt 3998  df-id 4222  df-xp 4552  df-rel 4553  df-cnv 4554  df-co 4555  df-dm 4556  df-rn 4557  df-iota 5095  df-fun 5132  df-fn 5133  df-f 5134  df-fv 5138  df-ov 5784  df-oprab 5785  df-mpo 5786  df-map 6551  df-pnf 7825  df-mnf 7826  df-xr 7827  df-psmet 12193
This theorem is referenced by:  psmetdmdm  12530  psmetf  12531  psmet0  12533  psmettri2  12534  psmetres2  12539  xmetpsmet  12575
  Copyright terms: Public domain W3C validator