ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mspropd Unicode version

Theorem mspropd 15065
Description: Property deduction for a metric space. (Contributed by Mario Carneiro, 4-Oct-2015.)
Hypotheses
Ref Expression
xmspropd.1  |-  ( ph  ->  B  =  ( Base `  K ) )
xmspropd.2  |-  ( ph  ->  B  =  ( Base `  L ) )
xmspropd.3  |-  ( ph  ->  ( ( dist `  K
)  |`  ( B  X.  B ) )  =  ( ( dist `  L
)  |`  ( B  X.  B ) ) )
xmspropd.4  |-  ( ph  ->  ( TopOpen `  K )  =  ( TopOpen `  L
) )
Assertion
Ref Expression
mspropd  |-  ( ph  ->  ( K  e.  MetSp  <->  L  e.  MetSp ) )

Proof of Theorem mspropd
StepHypRef Expression
1 xmspropd.1 . . . 4  |-  ( ph  ->  B  =  ( Base `  K ) )
2 xmspropd.2 . . . 4  |-  ( ph  ->  B  =  ( Base `  L ) )
3 xmspropd.3 . . . 4  |-  ( ph  ->  ( ( dist `  K
)  |`  ( B  X.  B ) )  =  ( ( dist `  L
)  |`  ( B  X.  B ) ) )
4 xmspropd.4 . . . 4  |-  ( ph  ->  ( TopOpen `  K )  =  ( TopOpen `  L
) )
51, 2, 3, 4xmspropd 15064 . . 3  |-  ( ph  ->  ( K  e.  *MetSp  <-> 
L  e.  *MetSp ) )
61sqxpeqd 4719 . . . . . . 7  |-  ( ph  ->  ( B  X.  B
)  =  ( (
Base `  K )  X.  ( Base `  K
) ) )
76reseq2d 4978 . . . . . 6  |-  ( ph  ->  ( ( dist `  K
)  |`  ( B  X.  B ) )  =  ( ( dist `  K
)  |`  ( ( Base `  K )  X.  ( Base `  K ) ) ) )
83, 7eqtr3d 2242 . . . . 5  |-  ( ph  ->  ( ( dist `  L
)  |`  ( B  X.  B ) )  =  ( ( dist `  K
)  |`  ( ( Base `  K )  X.  ( Base `  K ) ) ) )
92sqxpeqd 4719 . . . . . 6  |-  ( ph  ->  ( B  X.  B
)  =  ( (
Base `  L )  X.  ( Base `  L
) ) )
109reseq2d 4978 . . . . 5  |-  ( ph  ->  ( ( dist `  L
)  |`  ( B  X.  B ) )  =  ( ( dist `  L
)  |`  ( ( Base `  L )  X.  ( Base `  L ) ) ) )
118, 10eqtr3d 2242 . . . 4  |-  ( ph  ->  ( ( dist `  K
)  |`  ( ( Base `  K )  X.  ( Base `  K ) ) )  =  ( (
dist `  L )  |`  ( ( Base `  L
)  X.  ( Base `  L ) ) ) )
121, 2eqtr3d 2242 . . . . 5  |-  ( ph  ->  ( Base `  K
)  =  ( Base `  L ) )
1312fveq2d 5603 . . . 4  |-  ( ph  ->  ( Met `  ( Base `  K ) )  =  ( Met `  ( Base `  L ) ) )
1411, 13eleq12d 2278 . . 3  |-  ( ph  ->  ( ( ( dist `  K )  |`  (
( Base `  K )  X.  ( Base `  K
) ) )  e.  ( Met `  ( Base `  K ) )  <-> 
( ( dist `  L
)  |`  ( ( Base `  L )  X.  ( Base `  L ) ) )  e.  ( Met `  ( Base `  L
) ) ) )
155, 14anbi12d 473 . 2  |-  ( ph  ->  ( ( K  e. 
*MetSp  /\  ( ( dist `  K )  |`  ( ( Base `  K
)  X.  ( Base `  K ) ) )  e.  ( Met `  ( Base `  K ) ) )  <->  ( L  e. 
*MetSp  /\  ( ( dist `  L )  |`  ( ( Base `  L
)  X.  ( Base `  L ) ) )  e.  ( Met `  ( Base `  L ) ) ) ) )
16 eqid 2207 . . 3  |-  ( TopOpen `  K )  =  (
TopOpen `  K )
17 eqid 2207 . . 3  |-  ( Base `  K )  =  (
Base `  K )
18 eqid 2207 . . 3  |-  ( (
dist `  K )  |`  ( ( Base `  K
)  X.  ( Base `  K ) ) )  =  ( ( dist `  K )  |`  (
( Base `  K )  X.  ( Base `  K
) ) )
1916, 17, 18isms 15040 . 2  |-  ( K  e.  MetSp 
<->  ( K  e.  *MetSp  /\  ( ( dist `  K )  |`  (
( Base `  K )  X.  ( Base `  K
) ) )  e.  ( Met `  ( Base `  K ) ) ) )
20 eqid 2207 . . 3  |-  ( TopOpen `  L )  =  (
TopOpen `  L )
21 eqid 2207 . . 3  |-  ( Base `  L )  =  (
Base `  L )
22 eqid 2207 . . 3  |-  ( (
dist `  L )  |`  ( ( Base `  L
)  X.  ( Base `  L ) ) )  =  ( ( dist `  L )  |`  (
( Base `  L )  X.  ( Base `  L
) ) )
2320, 21, 22isms 15040 . 2  |-  ( L  e.  MetSp 
<->  ( L  e.  *MetSp  /\  ( ( dist `  L )  |`  (
( Base `  L )  X.  ( Base `  L
) ) )  e.  ( Met `  ( Base `  L ) ) ) )
2415, 19, 233bitr4g 223 1  |-  ( ph  ->  ( K  e.  MetSp  <->  L  e.  MetSp ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373    e. wcel 2178    X. cxp 4691    |` cres 4695   ` cfv 5290   Basecbs 12947   distcds 13033   TopOpenctopn 13187   Metcmet 14414   *MetSpcxms 14923   MetSpcms 14924
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-cnex 8051  ax-resscn 8052  ax-1re 8054  ax-addrcl 8057
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-reu 2493  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-inn 9072  df-2 9130  df-3 9131  df-4 9132  df-5 9133  df-6 9134  df-7 9135  df-8 9136  df-9 9137  df-ndx 12950  df-slot 12951  df-base 12953  df-tset 13043  df-rest 13188  df-topn 13189  df-top 14585  df-topon 14598  df-topsp 14618  df-xms 14926  df-ms 14927
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator