ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mspropd Unicode version

Theorem mspropd 13118
Description: Property deduction for a metric space. (Contributed by Mario Carneiro, 4-Oct-2015.)
Hypotheses
Ref Expression
xmspropd.1  |-  ( ph  ->  B  =  ( Base `  K ) )
xmspropd.2  |-  ( ph  ->  B  =  ( Base `  L ) )
xmspropd.3  |-  ( ph  ->  ( ( dist `  K
)  |`  ( B  X.  B ) )  =  ( ( dist `  L
)  |`  ( B  X.  B ) ) )
xmspropd.4  |-  ( ph  ->  ( TopOpen `  K )  =  ( TopOpen `  L
) )
Assertion
Ref Expression
mspropd  |-  ( ph  ->  ( K  e.  MetSp  <->  L  e.  MetSp ) )

Proof of Theorem mspropd
StepHypRef Expression
1 xmspropd.1 . . . 4  |-  ( ph  ->  B  =  ( Base `  K ) )
2 xmspropd.2 . . . 4  |-  ( ph  ->  B  =  ( Base `  L ) )
3 xmspropd.3 . . . 4  |-  ( ph  ->  ( ( dist `  K
)  |`  ( B  X.  B ) )  =  ( ( dist `  L
)  |`  ( B  X.  B ) ) )
4 xmspropd.4 . . . 4  |-  ( ph  ->  ( TopOpen `  K )  =  ( TopOpen `  L
) )
51, 2, 3, 4xmspropd 13117 . . 3  |-  ( ph  ->  ( K  e.  *MetSp  <-> 
L  e.  *MetSp ) )
61sqxpeqd 4630 . . . . . . 7  |-  ( ph  ->  ( B  X.  B
)  =  ( (
Base `  K )  X.  ( Base `  K
) ) )
76reseq2d 4884 . . . . . 6  |-  ( ph  ->  ( ( dist `  K
)  |`  ( B  X.  B ) )  =  ( ( dist `  K
)  |`  ( ( Base `  K )  X.  ( Base `  K ) ) ) )
83, 7eqtr3d 2200 . . . . 5  |-  ( ph  ->  ( ( dist `  L
)  |`  ( B  X.  B ) )  =  ( ( dist `  K
)  |`  ( ( Base `  K )  X.  ( Base `  K ) ) ) )
92sqxpeqd 4630 . . . . . 6  |-  ( ph  ->  ( B  X.  B
)  =  ( (
Base `  L )  X.  ( Base `  L
) ) )
109reseq2d 4884 . . . . 5  |-  ( ph  ->  ( ( dist `  L
)  |`  ( B  X.  B ) )  =  ( ( dist `  L
)  |`  ( ( Base `  L )  X.  ( Base `  L ) ) ) )
118, 10eqtr3d 2200 . . . 4  |-  ( ph  ->  ( ( dist `  K
)  |`  ( ( Base `  K )  X.  ( Base `  K ) ) )  =  ( (
dist `  L )  |`  ( ( Base `  L
)  X.  ( Base `  L ) ) ) )
121, 2eqtr3d 2200 . . . . 5  |-  ( ph  ->  ( Base `  K
)  =  ( Base `  L ) )
1312fveq2d 5490 . . . 4  |-  ( ph  ->  ( Met `  ( Base `  K ) )  =  ( Met `  ( Base `  L ) ) )
1411, 13eleq12d 2237 . . 3  |-  ( ph  ->  ( ( ( dist `  K )  |`  (
( Base `  K )  X.  ( Base `  K
) ) )  e.  ( Met `  ( Base `  K ) )  <-> 
( ( dist `  L
)  |`  ( ( Base `  L )  X.  ( Base `  L ) ) )  e.  ( Met `  ( Base `  L
) ) ) )
155, 14anbi12d 465 . 2  |-  ( ph  ->  ( ( K  e. 
*MetSp  /\  ( ( dist `  K )  |`  ( ( Base `  K
)  X.  ( Base `  K ) ) )  e.  ( Met `  ( Base `  K ) ) )  <->  ( L  e. 
*MetSp  /\  ( ( dist `  L )  |`  ( ( Base `  L
)  X.  ( Base `  L ) ) )  e.  ( Met `  ( Base `  L ) ) ) ) )
16 eqid 2165 . . 3  |-  ( TopOpen `  K )  =  (
TopOpen `  K )
17 eqid 2165 . . 3  |-  ( Base `  K )  =  (
Base `  K )
18 eqid 2165 . . 3  |-  ( (
dist `  K )  |`  ( ( Base `  K
)  X.  ( Base `  K ) ) )  =  ( ( dist `  K )  |`  (
( Base `  K )  X.  ( Base `  K
) ) )
1916, 17, 18isms 13093 . 2  |-  ( K  e.  MetSp 
<->  ( K  e.  *MetSp  /\  ( ( dist `  K )  |`  (
( Base `  K )  X.  ( Base `  K
) ) )  e.  ( Met `  ( Base `  K ) ) ) )
20 eqid 2165 . . 3  |-  ( TopOpen `  L )  =  (
TopOpen `  L )
21 eqid 2165 . . 3  |-  ( Base `  L )  =  (
Base `  L )
22 eqid 2165 . . 3  |-  ( (
dist `  L )  |`  ( ( Base `  L
)  X.  ( Base `  L ) ) )  =  ( ( dist `  L )  |`  (
( Base `  L )  X.  ( Base `  L
) ) )
2320, 21, 22isms 13093 . 2  |-  ( L  e.  MetSp 
<->  ( L  e.  *MetSp  /\  ( ( dist `  L )  |`  (
( Base `  L )  X.  ( Base `  L
) ) )  e.  ( Met `  ( Base `  L ) ) ) )
2415, 19, 233bitr4g 222 1  |-  ( ph  ->  ( K  e.  MetSp  <->  L  e.  MetSp ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1343    e. wcel 2136    X. cxp 4602    |` cres 4606   ` cfv 5188   Basecbs 12394   distcds 12466   TopOpenctopn 12557   Metcmet 12621   *MetSpcxms 12976   MetSpcms 12977
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-cnex 7844  ax-resscn 7845  ax-1re 7847  ax-addrcl 7850
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-inn 8858  df-2 8916  df-3 8917  df-4 8918  df-5 8919  df-6 8920  df-7 8921  df-8 8922  df-9 8923  df-ndx 12397  df-slot 12398  df-base 12400  df-tset 12476  df-rest 12558  df-topn 12559  df-top 12636  df-topon 12649  df-topsp 12669  df-xms 12979  df-ms 12980
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator