ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xmspropd Unicode version

Theorem xmspropd 13018
Description: Property deduction for an extended metric space. (Contributed by Mario Carneiro, 4-Oct-2015.)
Hypotheses
Ref Expression
xmspropd.1  |-  ( ph  ->  B  =  ( Base `  K ) )
xmspropd.2  |-  ( ph  ->  B  =  ( Base `  L ) )
xmspropd.3  |-  ( ph  ->  ( ( dist `  K
)  |`  ( B  X.  B ) )  =  ( ( dist `  L
)  |`  ( B  X.  B ) ) )
xmspropd.4  |-  ( ph  ->  ( TopOpen `  K )  =  ( TopOpen `  L
) )
Assertion
Ref Expression
xmspropd  |-  ( ph  ->  ( K  e.  *MetSp  <-> 
L  e.  *MetSp ) )

Proof of Theorem xmspropd
StepHypRef Expression
1 xmspropd.1 . . . . 5  |-  ( ph  ->  B  =  ( Base `  K ) )
2 xmspropd.2 . . . . 5  |-  ( ph  ->  B  =  ( Base `  L ) )
31, 2eqtr3d 2199 . . . 4  |-  ( ph  ->  ( Base `  K
)  =  ( Base `  L ) )
4 xmspropd.4 . . . 4  |-  ( ph  ->  ( TopOpen `  K )  =  ( TopOpen `  L
) )
53, 4tpspropd 12575 . . 3  |-  ( ph  ->  ( K  e.  TopSp  <->  L  e.  TopSp ) )
6 xmspropd.3 . . . . . . 7  |-  ( ph  ->  ( ( dist `  K
)  |`  ( B  X.  B ) )  =  ( ( dist `  L
)  |`  ( B  X.  B ) ) )
71sqxpeqd 4624 . . . . . . . 8  |-  ( ph  ->  ( B  X.  B
)  =  ( (
Base `  K )  X.  ( Base `  K
) ) )
87reseq2d 4878 . . . . . . 7  |-  ( ph  ->  ( ( dist `  K
)  |`  ( B  X.  B ) )  =  ( ( dist `  K
)  |`  ( ( Base `  K )  X.  ( Base `  K ) ) ) )
96, 8eqtr3d 2199 . . . . . 6  |-  ( ph  ->  ( ( dist `  L
)  |`  ( B  X.  B ) )  =  ( ( dist `  K
)  |`  ( ( Base `  K )  X.  ( Base `  K ) ) ) )
102sqxpeqd 4624 . . . . . . 7  |-  ( ph  ->  ( B  X.  B
)  =  ( (
Base `  L )  X.  ( Base `  L
) ) )
1110reseq2d 4878 . . . . . 6  |-  ( ph  ->  ( ( dist `  L
)  |`  ( B  X.  B ) )  =  ( ( dist `  L
)  |`  ( ( Base `  L )  X.  ( Base `  L ) ) ) )
129, 11eqtr3d 2199 . . . . 5  |-  ( ph  ->  ( ( dist `  K
)  |`  ( ( Base `  K )  X.  ( Base `  K ) ) )  =  ( (
dist `  L )  |`  ( ( Base `  L
)  X.  ( Base `  L ) ) ) )
1312fveq2d 5484 . . . 4  |-  ( ph  ->  ( MetOpen `  ( ( dist `  K )  |`  ( ( Base `  K
)  X.  ( Base `  K ) ) ) )  =  ( MetOpen `  ( ( dist `  L
)  |`  ( ( Base `  L )  X.  ( Base `  L ) ) ) ) )
144, 13eqeq12d 2179 . . 3  |-  ( ph  ->  ( ( TopOpen `  K
)  =  ( MetOpen `  ( ( dist `  K
)  |`  ( ( Base `  K )  X.  ( Base `  K ) ) ) )  <->  ( TopOpen `  L )  =  (
MetOpen `  ( ( dist `  L )  |`  (
( Base `  L )  X.  ( Base `  L
) ) ) ) ) )
155, 14anbi12d 465 . 2  |-  ( ph  ->  ( ( K  e. 
TopSp  /\  ( TopOpen `  K
)  =  ( MetOpen `  ( ( dist `  K
)  |`  ( ( Base `  K )  X.  ( Base `  K ) ) ) ) )  <->  ( L  e.  TopSp  /\  ( TopOpen `  L )  =  (
MetOpen `  ( ( dist `  L )  |`  (
( Base `  L )  X.  ( Base `  L
) ) ) ) ) ) )
16 eqid 2164 . . 3  |-  ( TopOpen `  K )  =  (
TopOpen `  K )
17 eqid 2164 . . 3  |-  ( Base `  K )  =  (
Base `  K )
18 eqid 2164 . . 3  |-  ( (
dist `  K )  |`  ( ( Base `  K
)  X.  ( Base `  K ) ) )  =  ( ( dist `  K )  |`  (
( Base `  K )  X.  ( Base `  K
) ) )
1916, 17, 18isxms 12992 . 2  |-  ( K  e.  *MetSp  <->  ( K  e.  TopSp  /\  ( TopOpen `  K )  =  (
MetOpen `  ( ( dist `  K )  |`  (
( Base `  K )  X.  ( Base `  K
) ) ) ) ) )
20 eqid 2164 . . 3  |-  ( TopOpen `  L )  =  (
TopOpen `  L )
21 eqid 2164 . . 3  |-  ( Base `  L )  =  (
Base `  L )
22 eqid 2164 . . 3  |-  ( (
dist `  L )  |`  ( ( Base `  L
)  X.  ( Base `  L ) ) )  =  ( ( dist `  L )  |`  (
( Base `  L )  X.  ( Base `  L
) ) )
2320, 21, 22isxms 12992 . 2  |-  ( L  e.  *MetSp  <->  ( L  e.  TopSp  /\  ( TopOpen `  L )  =  (
MetOpen `  ( ( dist `  L )  |`  (
( Base `  L )  X.  ( Base `  L
) ) ) ) ) )
2415, 19, 233bitr4g 222 1  |-  ( ph  ->  ( K  e.  *MetSp  <-> 
L  e.  *MetSp ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1342    e. wcel 2135    X. cxp 4596    |` cres 4600   ` cfv 5182   Basecbs 12331   distcds 12402   TopOpenctopn 12493   MetOpencmopn 12526   TopSpctps 12569   *MetSpcxms 12877
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-13 2137  ax-14 2138  ax-ext 2146  ax-coll 4091  ax-sep 4094  ax-pow 4147  ax-pr 4181  ax-un 4405  ax-cnex 7835  ax-resscn 7836  ax-1re 7838  ax-addrcl 7841
This theorem depends on definitions:  df-bi 116  df-3an 969  df-tru 1345  df-fal 1348  df-nf 1448  df-sb 1750  df-eu 2016  df-mo 2017  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-ral 2447  df-rex 2448  df-reu 2449  df-rab 2451  df-v 2723  df-sbc 2947  df-csb 3041  df-dif 3113  df-un 3115  df-in 3117  df-ss 3124  df-nul 3405  df-pw 3555  df-sn 3576  df-pr 3577  df-op 3579  df-uni 3784  df-int 3819  df-iun 3862  df-br 3977  df-opab 4038  df-mpt 4039  df-id 4265  df-xp 4604  df-rel 4605  df-cnv 4606  df-co 4607  df-dm 4608  df-rn 4609  df-res 4610  df-ima 4611  df-iota 5147  df-fun 5184  df-fn 5185  df-f 5186  df-f1 5187  df-fo 5188  df-f1o 5189  df-fv 5190  df-ov 5839  df-oprab 5840  df-mpo 5841  df-1st 6100  df-2nd 6101  df-inn 8849  df-2 8907  df-3 8908  df-4 8909  df-5 8910  df-6 8911  df-7 8912  df-8 8913  df-9 8914  df-ndx 12334  df-slot 12335  df-base 12337  df-tset 12412  df-rest 12494  df-topn 12495  df-top 12537  df-topon 12550  df-topsp 12570  df-xms 12880
This theorem is referenced by:  mspropd  13019
  Copyright terms: Public domain W3C validator