| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > xmspropd | Unicode version | ||
| Description: Property deduction for an extended metric space. (Contributed by Mario Carneiro, 4-Oct-2015.) |
| Ref | Expression |
|---|---|
| xmspropd.1 |
|
| xmspropd.2 |
|
| xmspropd.3 |
|
| xmspropd.4 |
|
| Ref | Expression |
|---|---|
| xmspropd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xmspropd.1 |
. . . . 5
| |
| 2 | xmspropd.2 |
. . . . 5
| |
| 3 | 1, 2 | eqtr3d 2264 |
. . . 4
|
| 4 | xmspropd.4 |
. . . 4
| |
| 5 | 3, 4 | tpspropd 14710 |
. . 3
|
| 6 | xmspropd.3 |
. . . . . . 7
| |
| 7 | 1 | sqxpeqd 4745 |
. . . . . . . 8
|
| 8 | 7 | reseq2d 5005 |
. . . . . . 7
|
| 9 | 6, 8 | eqtr3d 2264 |
. . . . . 6
|
| 10 | 2 | sqxpeqd 4745 |
. . . . . . 7
|
| 11 | 10 | reseq2d 5005 |
. . . . . 6
|
| 12 | 9, 11 | eqtr3d 2264 |
. . . . 5
|
| 13 | 12 | fveq2d 5631 |
. . . 4
|
| 14 | 4, 13 | eqeq12d 2244 |
. . 3
|
| 15 | 5, 14 | anbi12d 473 |
. 2
|
| 16 | eqid 2229 |
. . 3
| |
| 17 | eqid 2229 |
. . 3
| |
| 18 | eqid 2229 |
. . 3
| |
| 19 | 16, 17, 18 | isxms 15125 |
. 2
|
| 20 | eqid 2229 |
. . 3
| |
| 21 | eqid 2229 |
. . 3
| |
| 22 | eqid 2229 |
. . 3
| |
| 23 | 20, 21, 22 | isxms 15125 |
. 2
|
| 24 | 15, 19, 23 | 3bitr4g 223 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-cnex 8090 ax-resscn 8091 ax-1re 8093 ax-addrcl 8096 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-ov 6004 df-oprab 6005 df-mpo 6006 df-1st 6286 df-2nd 6287 df-inn 9111 df-2 9169 df-3 9170 df-4 9171 df-5 9172 df-6 9173 df-7 9174 df-8 9175 df-9 9176 df-ndx 13035 df-slot 13036 df-base 13038 df-tset 13129 df-rest 13274 df-topn 13275 df-top 14672 df-topon 14685 df-topsp 14705 df-xms 15013 |
| This theorem is referenced by: mspropd 15152 |
| Copyright terms: Public domain | W3C validator |