ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xmspropd Unicode version

Theorem xmspropd 13271
Description: Property deduction for an extended metric space. (Contributed by Mario Carneiro, 4-Oct-2015.)
Hypotheses
Ref Expression
xmspropd.1  |-  ( ph  ->  B  =  ( Base `  K ) )
xmspropd.2  |-  ( ph  ->  B  =  ( Base `  L ) )
xmspropd.3  |-  ( ph  ->  ( ( dist `  K
)  |`  ( B  X.  B ) )  =  ( ( dist `  L
)  |`  ( B  X.  B ) ) )
xmspropd.4  |-  ( ph  ->  ( TopOpen `  K )  =  ( TopOpen `  L
) )
Assertion
Ref Expression
xmspropd  |-  ( ph  ->  ( K  e.  *MetSp  <-> 
L  e.  *MetSp ) )

Proof of Theorem xmspropd
StepHypRef Expression
1 xmspropd.1 . . . . 5  |-  ( ph  ->  B  =  ( Base `  K ) )
2 xmspropd.2 . . . . 5  |-  ( ph  ->  B  =  ( Base `  L ) )
31, 2eqtr3d 2205 . . . 4  |-  ( ph  ->  ( Base `  K
)  =  ( Base `  L ) )
4 xmspropd.4 . . . 4  |-  ( ph  ->  ( TopOpen `  K )  =  ( TopOpen `  L
) )
53, 4tpspropd 12828 . . 3  |-  ( ph  ->  ( K  e.  TopSp  <->  L  e.  TopSp ) )
6 xmspropd.3 . . . . . . 7  |-  ( ph  ->  ( ( dist `  K
)  |`  ( B  X.  B ) )  =  ( ( dist `  L
)  |`  ( B  X.  B ) ) )
71sqxpeqd 4637 . . . . . . . 8  |-  ( ph  ->  ( B  X.  B
)  =  ( (
Base `  K )  X.  ( Base `  K
) ) )
87reseq2d 4891 . . . . . . 7  |-  ( ph  ->  ( ( dist `  K
)  |`  ( B  X.  B ) )  =  ( ( dist `  K
)  |`  ( ( Base `  K )  X.  ( Base `  K ) ) ) )
96, 8eqtr3d 2205 . . . . . 6  |-  ( ph  ->  ( ( dist `  L
)  |`  ( B  X.  B ) )  =  ( ( dist `  K
)  |`  ( ( Base `  K )  X.  ( Base `  K ) ) ) )
102sqxpeqd 4637 . . . . . . 7  |-  ( ph  ->  ( B  X.  B
)  =  ( (
Base `  L )  X.  ( Base `  L
) ) )
1110reseq2d 4891 . . . . . 6  |-  ( ph  ->  ( ( dist `  L
)  |`  ( B  X.  B ) )  =  ( ( dist `  L
)  |`  ( ( Base `  L )  X.  ( Base `  L ) ) ) )
129, 11eqtr3d 2205 . . . . 5  |-  ( ph  ->  ( ( dist `  K
)  |`  ( ( Base `  K )  X.  ( Base `  K ) ) )  =  ( (
dist `  L )  |`  ( ( Base `  L
)  X.  ( Base `  L ) ) ) )
1312fveq2d 5500 . . . 4  |-  ( ph  ->  ( MetOpen `  ( ( dist `  K )  |`  ( ( Base `  K
)  X.  ( Base `  K ) ) ) )  =  ( MetOpen `  ( ( dist `  L
)  |`  ( ( Base `  L )  X.  ( Base `  L ) ) ) ) )
144, 13eqeq12d 2185 . . 3  |-  ( ph  ->  ( ( TopOpen `  K
)  =  ( MetOpen `  ( ( dist `  K
)  |`  ( ( Base `  K )  X.  ( Base `  K ) ) ) )  <->  ( TopOpen `  L )  =  (
MetOpen `  ( ( dist `  L )  |`  (
( Base `  L )  X.  ( Base `  L
) ) ) ) ) )
155, 14anbi12d 470 . 2  |-  ( ph  ->  ( ( K  e. 
TopSp  /\  ( TopOpen `  K
)  =  ( MetOpen `  ( ( dist `  K
)  |`  ( ( Base `  K )  X.  ( Base `  K ) ) ) ) )  <->  ( L  e.  TopSp  /\  ( TopOpen `  L )  =  (
MetOpen `  ( ( dist `  L )  |`  (
( Base `  L )  X.  ( Base `  L
) ) ) ) ) ) )
16 eqid 2170 . . 3  |-  ( TopOpen `  K )  =  (
TopOpen `  K )
17 eqid 2170 . . 3  |-  ( Base `  K )  =  (
Base `  K )
18 eqid 2170 . . 3  |-  ( (
dist `  K )  |`  ( ( Base `  K
)  X.  ( Base `  K ) ) )  =  ( ( dist `  K )  |`  (
( Base `  K )  X.  ( Base `  K
) ) )
1916, 17, 18isxms 13245 . 2  |-  ( K  e.  *MetSp  <->  ( K  e.  TopSp  /\  ( TopOpen `  K )  =  (
MetOpen `  ( ( dist `  K )  |`  (
( Base `  K )  X.  ( Base `  K
) ) ) ) ) )
20 eqid 2170 . . 3  |-  ( TopOpen `  L )  =  (
TopOpen `  L )
21 eqid 2170 . . 3  |-  ( Base `  L )  =  (
Base `  L )
22 eqid 2170 . . 3  |-  ( (
dist `  L )  |`  ( ( Base `  L
)  X.  ( Base `  L ) ) )  =  ( ( dist `  L )  |`  (
( Base `  L )  X.  ( Base `  L
) ) )
2320, 21, 22isxms 13245 . 2  |-  ( L  e.  *MetSp  <->  ( L  e.  TopSp  /\  ( TopOpen `  L )  =  (
MetOpen `  ( ( dist `  L )  |`  (
( Base `  L )  X.  ( Base `  L
) ) ) ) ) )
2415, 19, 233bitr4g 222 1  |-  ( ph  ->  ( K  e.  *MetSp  <-> 
L  e.  *MetSp ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1348    e. wcel 2141    X. cxp 4609    |` cres 4613   ` cfv 5198   Basecbs 12416   distcds 12489   TopOpenctopn 12580   MetOpencmopn 12779   TopSpctps 12822   *MetSpcxms 13130
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-cnex 7865  ax-resscn 7866  ax-1re 7868  ax-addrcl 7871
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-inn 8879  df-2 8937  df-3 8938  df-4 8939  df-5 8940  df-6 8941  df-7 8942  df-8 8943  df-9 8944  df-ndx 12419  df-slot 12420  df-base 12422  df-tset 12499  df-rest 12581  df-topn 12582  df-top 12790  df-topon 12803  df-topsp 12823  df-xms 13133
This theorem is referenced by:  mspropd  13272
  Copyright terms: Public domain W3C validator